| ||||
Wpisał: Michał Ostrowski | ||||
20.11.2014. | ||||
Strona 1 z 2 Algorytmy ewolucyjne i inteligentny projekt
[Przypominam, bo znów słyszę bełkocik "młodyc, nauczonych" o DOWODACH na "ewolucję samoistną". Wróg Prawdy umacnia się w szkołach.. Mirosław Dakowski]
Michał Ostrowski Działający pod systemem operacyjnym Windows program Weasel (łasica) jest prostą prezentacją … http://www.creationism.org.pl/artykuly/Weasel1.php Działający pod systemem operacyjnym Windows program Weasel (łasica) jest prostą prezentacją ewolucyjnego (genetycznego) algorytmu i służy do badania komputerowych symulacji ewolucyjnych procesów. Powstał on na bazie słynnej symulacji autorstwa znanego oksfordzkiego biologa i popularyzatora teorii ewolucji, Richarda Dawkinsa. W swojej książce Ślepy zegarmistrz opisał on taką symulację jako ilustrację potęgi doboru kumulatywnego. Program Weasel nie tylko dokładnie odwzorowuje symulację autorstwa Dawkinsa, ale posiada wiele dodatkowych opcji i funkcji, które wprowadzają do niej nieco biologicznego realizmu. Są to m.in. określanie tempa mutacji, ich rodzajów, liczby potomstwa itp. Program zawiera także opcję modelowania ewolucji projektowanej przez użytkownika sekwencji aminokwasów opartych na odpowiednich kodonach DNA. Program Weasel przez swoją prostotę, intuicyjność i wielofunkcyjność jest doskonałym narzędziem dla wszystkich zainteresowanych algorytmami genetycznymi — zarówno początkujących, jak i pasjonatów, w prosty sposób demonstrując fałszywość zapewnień, że ewolucyjne algorytmy potwierdzają teorię ewolucji. POBIERZ PROGRAM WEASEL (895 KB ZIP) Uwaga: Program jest prosty i intuicyjny, ale w wersji angielskiej. Dlatego mocno sugerujemy, aby pierwsze kroki z programem Weasel stawiać mając przed oczami Przewodnik po programie Weasel. Ułatwi on znacznie początkującemu użytkownikowi korzystanie z tego ewolucyjnego symulatora. Algorytmy ewolucyjne zaczęły robić karierę z końcem lat 60-tych i początkiem 70-tych ubiegłego wieku, kiedy John Holland wraz ze swoimi studentami z University of Michigan stworzyli program zwany algorytmem genetycznym do symulowania procesu ewolucji w naturze. [1] Od tego czasu na tym polu nastąpił ogromny postęp; komputerowe symulacje oferują idealne warunki, dzięki który powolny i rozciągnięty w czasie proces ewolucji może zostać in silico przyspieszony. Wedle zapewnień ewolucjonistów, algorytmy genetyczne zawierają również podstawowe charakterystyki tego procesu. Otwiera to nowe możliwości pomocne w udzielaniu odpowiedzi na takie pytania, jak: w jaki sposób darwinowski mechanizm prowadził do powstawania nowych funkcji, do znajdowania szeregu rozwiązań spełniających cechy projektu? Jest rozpowszechnionym poglądem, że ewolucyjne algorytmy potwierdzają neodarwinistyczny mechanizm, jakoby dobór naturalny i przypadkowe mutację były główną kreacyjną siłą w biologii. Jednakże dokładna analiza ewolucyjnych algorytmów i informacji, za pomocą której programuje się je pokazuje, że ewolucyjne algorytmy stwarzają problem, a nie stanowią rozwiązanie dla kwestii pochodzenia informacji i kompleksowości w żywych organizmach. Nie rozwiązując problemu jedynie spychają go głębiej. Algorytmy ewolucyjne - czym są? Algorytmy ewolucyjne i genetyczne to ściśle zdefiniowane matematyczne procedury stosowane do rozwiązywania niektórych problemów optymalizacyjnych (lub decyzyjnych), dla których standardowe algorytmy są nieznane lub mają nieakceptowalnie długi czas działania. Twierdzi się o nich, że zasada ich działania naśladuje mechanizmy znane ze świata przyrody, tj. doboru naturalnego i dziedziczności. Mechanizmy te polegają na przetrwaniu osobników najlepiej przystosowanych w danym środowisku. Osobniki te przekazują informację genetyczną swoim "potomkom". W wyniku "krzyżowania się" tej pochodzącej od "rodziców" informacji, jak i przypadkowym mutacjom powstają nowe warianty "organizmów". Kolejne pokolenia są oceniane pod kątem wcześniej zdefiniowanego przystosowania do środowiska, a te najlepsze są selekcjonowane do dalszej "ewolucji". Mamy tu więc do czynienia ze swoistym procesem optymalizacji. Algorytmy ewolucyjne zawierają w sobie element losowości konieczny do otrzymania najlepszych wyników optymalizacji. To powoduje, że są one często przedstawiane jako doskonała ilustracja, a nawet potwierdzenie, teorii biologicznej ewolucji. Jest to jednak twierdzenie fałszywe. Aby algorytmy ewolucyjne znalazły rozwiązanie jakiegoś problemu, konieczna do tego informacja musi zostać do nich rozumnie wprowadzona w samej konstrukcji takiego algorytmu, jak i w specjalnej funkcji, która ocenia wyniki (najczęściej jest to tzw. funkcja dostosowania lub oceny — fitness function). Każdy więc projekt, jaki generują algorytmy ewolucyjne wymaga najpierw wprowadzenia projektu — w konstrukcji takiego algorytmu i w informacji, która steruje takim algorytmem. Naukowcy badający ewolucyjne algorytmy realizują tym samym zasadę, że aby ewolucyjny algorytm wytworzył jakiś projekt wymaga najpierw wprowadzenia do niego projektu. Algorytmy, o których twierdzi się, że potwierdzają niewyobrażalne kreacyjne moce przypadku, spełniać muszą m.in. następujące warunki:
Pod tym względem bardzo pouczające są słowa Geoffrey’a Millera z University College w Londynie: Algorytmy genetyczne sprawdzają się przy poszukiwaniu raczej prostych rozwiązań w małej przestrzeni projektów. Jednak dla trudnych problemów i bardzo dużej przestrzeni projektów, zaprojektowanie dobrego genetycznego algorytmu jest bardzo, bardzo trudne. Cała wiedza jaką nasi inżynierowie mogą wykorzystać stojąc w obliczu projektowania — specjalistyczna wiedza, inżynieryjne zasady, narzędzia analityczne, metody heurystyczne i tym podobne — musi być wbudowana w genetyczny algorytm. [2] Gdyby na poważnie brać zapewnienia niektórych ewolucjonistów, że algorytmy ewolucyjne są dobrą ilustracją biologicznej ewolucji, znaczy to, że ewolucja ta jest procesem, w którym inteligencja gra ogromną rolę. A więc otrzymalibyśmy formę kreacjonizmu. Wynika z tego, że ewolucyjne algorytmy (i neodarwinistyczny mechanizm w szczególności) są niezdolne do rozwiązania problemu spontanicznego, naturalistycznego powstawania projektów, jakie widzimy np. w żywych organizmach. Nie zważając na to, wielu koryfeuszy ewolucjonizmu bezustannie przywołuje algorytmy ewolucyjne jako analogię procesu biologicznej ewolucji. Symulacja Dawkinsa Najbardziej znaną taką demonstracją ewolucji jest program Richarda Dawkinsa zwykle nazywany WEASEL, zaprezentowany w jego książce Ślepy zegarmistrz. W symulacji tej potęga doboru kumulatywnego pokazana jest jako procedura zaczynająca się od przypadkowej sekwencji liter (takich, jakie mogły być napisane np. przez małpę chaotycznie uderzającą w klawiaturę komputera) i stopniowo przekształcającą się w hamletowską sentencję METHINKS IT IS LIKE A WEASEL (Zdaje mi się, że jest podobniejsza do łasicy). [3] |