Kanadyjski naukowiec dr Kyle Beattie dokonał niezwykle ważnej analizy statystycznej danych ze 145 krajów dotyczących zgonów i zachorowań po wprowadzeniu masowych szczepień na covid. Poniżej streszczenie oraz link do tej pracy.
Są to przerażające i oskarżające dane, które pokazują, że prowadzenie tych szczepień dramatycznie zwiększyło umieralność (średnio + 463%) i zachorowalność na całym świecie (+ 260%).
Teraz już nie można mieć wątpliwości, że podstępnie wprowadzone fałszywe, niezwykle toksyczne szczepienia na covid, do których przymuszano ludzi na całym świecie, posłużyły do holokaustu ludzkości.
Należy żądać szybkiego postawienia przed trybunałem Norymberga 2 wszystkich winnych tych zbrodni: koncernów farmaceutycznych, naukowców i oligarchów, którzy nielegalnie wyprodukowali i sponsorowali produkcję broni biologicznej covida-19 oraz jeszcze silniejszych ludobójczych broni – szczepionek covid.
Na ławie oskarżonych muszą znaleźć się też politycy, pseudolekarze-lobbyści oraz reprezentanci mediów, którzy nieustannie okłamywali i straszyli ludzi oraz promowali stosowanie tych śmiercionośnych preparatów.
Jest możliwe, że taki proces będzie zablokowany przez oligarchów, którzy zarobili na covid-holokauście tryliony, wówczas należy oczekiwać wielkiej światowej rewolucji przeciw covido-szczepiennym ludobójcom i ich wspólnikom. Na szczeblach krajowych takie rewolucje już wybuchają.
——
Worldwide Bayesian Causal Impact Analysis of Vaccine Administration on Deaths and Cases Associated with COVID-19: A BigData Analysis of 145 Countries
November 2021 DOI:10.13140/RG.2.2.34214.65605
Authors: Kyle Beattie University of Alberta
Abstract:
Policy makers and mainstream news anchors have promised the public that the COVID-19 vaccine rollout worldwide would reduce symptoms, and thereby cases and deaths associated with COVID-19. While this vaccine rollout is still in progress, there is a large amount of public data available that permits an analysis of the effect of the vaccine rollout on COVID-19 related cases and deaths. Has this public policy treatment produced the desired effect? One manner to respond to this question can begin by implementing a Bayesian causal analysis comparing both pre- and post-treatment periods. This study analyzed publicly available COVID-19 data from OWID utlizing the R package CausalImpact to determine the causal effect of the administration of vaccines on two dependent variables that have been measured cumulatively throughout the pandemic: total deaths per million (y1) and total cases per million (y2). After eliminating all results from countries with p > 0.05, there were 128 countries for y1 and 103 countries for y2 to analyze in this fashion, comprising 145 unique countries in total (avg. p < 0.004). Results indicate that the treatment (vaccine administration) has a strong and statistically significant propensity to causally increase the values in either y1 or y2 over and above what would have been expected with no treatment. y1 showed an increase/decrease ratio of (+115/-13), which means 89.84% of statistically significant countries showed an increase in total deaths per million associated with COVID-19 due directly to the causal impact of treatment initiation. y2 showed an increase/decrease ratio of (+105/-16) which means 86.78% of statistically significant countries showed an increase in total cases per million of COVID-19 due directly to the causal impact of treatment initiation. Causal impacts of the treatment on y1 ranges from -19% to +19015% with an average causal impact of +463.13%. Causal impacts of the treatment on y2 ranges from -46% to +12240% with an average causal impact of +260.88%. Hypothesis 1 Null can be rejected for a large majority of countries. This study subsequently performed correlational analyses on the causal impact results, whose effect variables can be represented as y1.E and y2.E respectively, with the independent numeric variables of: days elapsed since vaccine rollout began (n1), total vaccination doses per hundred (n2), total vaccine brands/types in use (n3) and the independent categorical variables continent (c1), country (c2), vaccine variety (c3). All categorical variables showed statistically significant (avg. p: < 0.001) postive Wilcoxon signed rank values (y1.E V:[c1 3.04; c2: 8.35; c3: 7.22] and y2.E V:[c1 3.04; c2: 8.33; c3: 7.19]). This demonstrates that the distribution of y1.E and y2.E was non-uniform among categories. The Spearman correlation between n2 and y2.E was the only numerical variable that showed statistically significant results (y2.E ~ n2: rho: 0.34 CI95%[0.14, 0.51], p: 4.91e-04). This low positive correlation signifies that countries with higher vaccination rates do not have lower values for y2.E, slightly the opposite in fact. Still, the specifics of the reasons behind these differences between countries, continents, and vaccine types is inconclusive and should be studied further as more data become available. Hypothesis 2 Null can be rejected for c1, c2, c3 and n2 and cannot be rejected for n1, and n3. The statistically significant and overwhelmingly positive causal impact after vaccine deployment on the dependent variables total deaths and total cases per million should be highly worrisome for policy makers. They indicate a marked increase in both COVID-19 related cases and death due directly to a vaccine deployment that was originally sold to the public as the “key to gain back our freedoms.” The effect of vaccines on total cases per million and its low positive association with total vaccinations per hundred signifies a limited impact of vaccines on lowering COVID-19 associated cases. These results should encourage local policy makers to make policy decisions based on data, not narrative, and based on local conditions, not global or national mandates. These results should also encourage policy makers to begin looking for other avenues out of the pandemic aside from mass vaccination campaigns. Some variables that could be included in future analyses might include vaccine lot by country, the degree of prevalence of previous antibodies against SARS-CoV or SARS-CoV-2 in the population before vaccine administration begins, and the Causal Impact of ivermectin on the same variables used in this study.
Maria Majewska <nonnocere3@gmail.com>