Jan Rybski – Komentarz: Jeśli ktokolwiek po lekturze poniższego artykułu nadal będzie naiwnie myślał, że koncerny farmaceutyczne pracują usilnie nad ratowaniem ludzkiego zdrowia i życia, temu już nikt i nic pomóc nie może. Big-Pharma to największy zbrodniczy kartel w historii ludzkości, powstały dla organizacji i przeprowadzenia zbrodni ludobójstwa na skalę globalną, który korzeniami sięga Niemiec hitlerowskich i ich głównego sponsora, powstałego w 1925 roku żydowsko-niemieckiego koncernu IG Farben (w strukturach którego produkowano m. in. Cyklon B), zlikwidowanego ostatecznie w 2012 roku (!!!). Perfidny i podstępny paradoks ich działania polega na tym, że zbrodni tej dokonują za nasze pieniądze, jako podatników i konsumentów, którzy raz, jako podatnicy, pozwalają swoim rządom na refundację zbrodniczych w zamiarze i działaniu wyprodukowanych przez siebie specyfików, preparatów i terapii, i dwa, sprzedają je nam, jako konsumentom, za nasze ciężko zapracowane pieniądze, tworząc
==========================================
Pfizer podobno zataił przed FDA i Health Canada obecność DNA związanego z rakiem w szczepionkach przeciwko COVID-19
Zgodnie z informacjami ujawnionymi przez Epoch Times, Pfizer celowo nie poinformował organów regulujących leki, w tym Health Canada, amerykańskiej FDA i Europejskiej Agencji Leków, że w ich eksperymentalnym zastrzyku COVID znajdował się związany z rakiem wzmacniacz DNA – SV40.
(LifeSiteNews) – Gigant farmaceutyczny Pfizer podobno “zdecydował się nie informować” Health Canada, U.S. Food and Drug Administration i innych agencji regulacyjnych, że sekwencja DNA wirusa polio Simian Virus 40 (SV40) związana z rakiem znajdowała się w ich szeroko rozpowszechnionej szczepionce COVID-19.
Według informacji uzyskanej 23. kwietnia przez Epoch Times, Pfizer celowo nie poinformował organów regulacyjnych ds. leków, w tym Health Canada, U.S. Food and Drugs Administration i European Medicines Agency, że SV40 był obecny w ich eksperymentalnym zastrzyku COVID.
“Rozumiem, że w CBER [Center for Biologics Evaluation and Research] odbyły się wewnętrzne dyskusje dotyczące obecności sekwencji wzmacniacza/promotora SV40, zauważając, że jego obecność nie jest związana z celem plazmidu firmy Pfizer jako szablonu transkrypcji dla ich szczepionki mRNA COVID-19” – napisał dr Dean Smith, starszy ewaluator naukowy w Health Canada’s Vaccine Quality Division, w e-mailu do kolegi z FDA na temat SV40.
Sierpniowy e-mail został uzyskany na podstawie wniosku o dostęp do informacji złożonego przez Epoch Times.
“Pfizer przekazał nam ostatnio, że najwyraźniej zdecydował się nie wspominać EMA, FDA lub HC o tych informacjach w czasie ich początkowych lub późniejszych zgłoszeń” – dodał.
Smith zauważył, że Kevin McKernan, mikrobiolog i były badacz oraz lider zespołu w projekcie MIT Human Genome, a także dr Phillip J. Buckhaults, który jest profesorem genomiki nowotworów, a także dyrektorem Cancer Genetics Lab na Uniwersytecie Południowej Karoliny, publicznie podnieśli kwestie obecności SV40 w szczepionkach.
Podczas gdy Health Canada początkowo powiedziała Kanadyjczykom, że nie była świadoma obecności wzmacniacza SV40, agencja od tego czasu potwierdza obecność sekwencji DNA powiązanej z małpą, o której wiadomo, że powoduje raka, gdy była stosowana w starych szczepionkach przeciwko polio.
Wirus SV40 jest wykorzystywany do wzmocnienia transkrypcji genów podczas wykonywania zastrzyków. Został on powiązany z rozprzestrzenianiem się nowotworów turbo u osób, które były narażone na działanie wirusa poprzez skażone zastrzyki.
Według badania z 2002 roku opublikowanego w Lancet istnieją dowody łączące starsze szczepionki przeciwko polio, które zawierały zanieczyszczenia SV40, z niektórymi formami raka.
Szczepionki przeciwko polio z późnych lat 50-tych i wczesnych 60-tych były skażone wirusem SV40, po tym, jak odkryto, że wirus ten był obecny w komórkach nerek małp, których twórcy szczepionek używali do tworzenia zastrzyków.
Autorzy badania z 2002 roku twierdzą, że skażona SV40 szczepionka przeciwko polio mogła spowodować nawet połowę z 55 000 przypadków chłoniaka nieziarniczego diagnozowanych każdego roku.
SV40, według nieżyjącego już twórcy szczepionek dr Maurice’a Hillemana, został umieszczony w szczepionce przeciwko polio, a następnie w szczepionce przeciwko HIV przez firmę Big Pharma Merck rzekomo nieumyślnie.
Niestety, nie jest to pierwszy dowód na to, że Pfizer ukrywał obecność SV40 przed organami regulacyjnymi ds. leków.
Według dr Janci Lindsay, która pracuje jako dyrektor ds. toksykologii i biologii molekularnej w Toxicology Support Services, Pfizer nie ujawnił obecności “promotorów” SV40 zarówno Health Canada, jak i amerykańskiej Agencji Żywności i Leków, a także Europejskiej Agencji Leków.
Powiedziała, jak donosi The Epoch Times, że firma farmaceutyczna je “ukryła”.
“Nie chodzi więc tylko o fakt, że tam są, ale o to, że zostały celowo ukryte przed organami regulacyjnymi” – zauważyła.
Wiadomość o celowym zatajaniu informacji przez firmę Pfizer pojawia się w momencie, gdy niekorzystne skutki pierwszej rundy szczepień przeciwko COVID spowodowały, że coraz więcej Kanadyjczyków złożyło wnioski o odszkodowanie finansowe za rzekome obrażenia spowodowane szczepionkami za pośrednictwem Kanadyjskiego Programu Szczepień (VISP).
Do tej pory VISP wypłaciło ponad $6 mln euro na rzecz osób poszkodowanych w wyniku zastrzyków COVID, przy czym do uregulowania pozostało około 2 000 roszczeń.
Dodatkowo ostatnie badania korelacji przeprowadzone przez badaczy z Kanady w interesie publicznym wykazały, że 17 krajów znalazło “zdecydowany związek przyczynowy” między szczytami śmiertelności z jakiejkolwiek przyczyny a szybkim wprowadzeniem szczepionek przeciwko COVID-19 oraz ich “boosterów”.
--
Jan Rybski
Inicjator-Założyciel
Inicjatywa na Rzecz Nowej Polski "BASTA!"
Profesor Fukushima, najstarszy onkolog w Japonii, potępia szczepionki mRNA jako „złe praktyki naukowe” [prof. Masanori Fukushima, MD, Ph.D. ]
Jestem najstarszym onkologiem medycznym w Japonii. Jako pierwsza otworzył przychodnię onkologiczną na Uniwersytecie w Kioto, a wcześniej na Uniwersytecie w Kioto. W 2020 roku był kierownikiem oddziału w Aichi Cancer Center, wszystkie stanowiska znajdowały się w Aichi Cancer Center Hospital. Założył pierwszy kurs farmako-epidemiologii na Uniwersytecie w Kioto w Japonii. …
Lekarze mówią o tak zwanym „turbo raku”, typie wcześniej nie obserwowanym przez lekarzy, charakteryzującym się niewiarygodnie dużą szybkością. W chwili wykrycia jest już w czwartym stadium zaawansowania nowotworu i takie przypadki zaczynają sporadycznie pojawiać się w konsultacjach. W związku z tym lekarze zaczęli dzielić się informacjami o tych niezwykłych przypadkach, różniących się od wcześniejszych.
Tak więc sytuacja ta stopniowo się zmieniała od zeszłego roku lub roku wcześniej. Rzeczywiście lekarze wyczuwali w terenie, że może dziać się coś niezwykłego związanego z rakiem. Czuli to na ziemi. … Co więcej, wyniki naszej analizy zaskakująco pokazują, że określone typy nowotworów, w odniesieniu do szczepień, wydają się charakteryzować zwiększoną śmiertelnością. W pierwszej kolejności nowotwory takie jak rak piersi, rak jajnika, rak tarczycy, a następnie statystycznie rak przełyku i płuc. Są to najczęstsze, a kolejnym jest rak prostaty u mężczyzn. Takie nowotwory szczególnie powodują nadmierną śmiertelność. Zjawiska tego nie można po prostu wytłumaczyć zakłóceniami, takimi jak brak możliwości wczesnych badań przesiewowych z powodu pandemii lub utrata możliwości leczenia. …
To tak, jakbyśmy otworzyli puszkę Pandory i teraz spotykamy się z najróżniejszymi chorobami. Stawiamy im czoła. Choroby autoimmunologiczne, choroby neurodegeneracyjne, nowotwory i infekcje.
Wszystko to, łącznie z rzadkimi i trudnymi chorobami, a nawet tymi rzadkimi schorzeniami, ma miejsce.Zwykli lekarze spotykają się nawet z chorobami, o których nie słyszano. … To, [co nam piszą o szczepieniach, to] nie jest nauka; moim zdaniem bardziej przypomina to wiarę, histerię, a nawet zachowanie kultowe. Sprzeciw wobec szczepionek nie czyni kogoś heretykiem takim jak Galileusz; to tak, jakby być traktowanym jak kompletny wyrzutek.
Taka jest sytuacja. To szaleństwo. … Naprawdę musimy poważnie potraktować te szkody i poważnie się nimi zająć. Wszelkie wysiłki mające na celu odrzucenie tych szkód, jak gdyby ich nie było, są, szczerze mówiąc, dziełem zła. Jest to kwintesencja złego praktyki nauki. … Dlatego ta szczepionka od początku opierała się na błędnych przekonaniach, niewłaściwym postępowaniu i złych praktykach naukowych, była całkowicie wadliwa, oparta na błędnych przekonaniach, prowadząc do całkowicie fałszywej produkcji, fałszywego produktu, jak sądzę. …
Musimy ponownie bezpośrednio się z tym skonfrontować i rzucić na to światło nauki, dlatego WHO powinna poprowadzić kompleksowe badania wyników nad tą szczepionką genową zastosowaną po raz pierwszy na szeroką skalę u ludzkości, a wszystkie kraje powinny z nią współpracować.
Nigdy więcej nie powinniśmy stosować takich szczepionek.
Analiza wyciągów danych z bazy danych planu ubezpieczenia zdrowotnego Ontario (OHIP) od stycznia 20215 r. do grudnia 2022 r. ujawnia niezliczone szkody związane z reprodukcją, jakie ponieśli mieszkańcy Ontario w następstwie wprowadzenia szczepionek przeciwko Covid-19 w Kanadzie. Ten zbiór danych obejmuje około sześciu milionów unikalnych pacjentów. Co ważne, zawiera dane „wyjściowe” z czterech lat sprzed pojawienia się w Kanadzie szczepionek na Covid-19 lub szczepionkę przeciwko Covid-19, a także dane z roku 2020, kiedy choroba występowała tylko na Covid-19, oraz lata, w których szczepionka przeciwko COVID z lat 2021 i 2022. Daje nam to wgląd w zmiany zdrowotne, jakich doświadczyli mieszkańcy Ontario po wprowadzeniu szczepionek przeciwko COVID, z których ponad 85% mieszkańców Ontario przyjęło dwie dawki do 30 marca 2022 r. Około pięćdziesiąt procent mieszkańców Ontario otrzymało trzecią dawkę przypominającą w tym samym terminie.
Dlatego dane odzwierciedlają bardzo dużą liczbę zaszczepionych populacji i skutki tych szczepień.
W tej analizie analizowane są dane uzyskane w wyniku wniosków o wolność informacji, powiązane z dziewięcioma kodami diagnostycznymi OHIP (tzw. kodami rozliczeniowymi):
W przypadku wszystkich tych kategorii rozrodczych liczba pacjentów, którym przyznano te kody diagnostyczne, wzrosła co najmniej dwukrotnie od 2020 r., kiedy szczepionki przeciwko Covid-19 nie były jeszcze dostępne, do lat 2021 i 2022, kiedy zdecydowana większość mieszkańców Ontario otrzymała co najmniej dwie dawki szczepionek przeciwko Covid-19.
Pracownicy służby zdrowia pracujący w placówkach ambulatoryjnych korzystają z kodów rozliczeniowych/diagnostycznych OHIP przy składaniu wniosków do Programu ubezpieczenia zdrowotnego Ontario. Ponieważ Kanada ma medycynę “uspołecznioną”, mieszkańcy muszą najpierw udać się do lekarza pierwszego kontaktu, aby otrzymać skierowanie do specjalisty. Roszczenia ubezpieczeniowe z tytułu tych wizyt pacjentów należy składać za pośrednictwem elektronicznego przelewu roszczeń medycznych w Ontario. Zatem, z nielicznymi wyjątkami, dane te przedstawiają wszystkie diagnozy mieszkańców Ontario dotyczące opieki zdrowotnej inne niż nagłe przypadki w latach 2015–2022.
Ustalenia dotyczące szkód reprodukcyjnych – lata 2021–2022 w porównaniu z rokiem 2020
Przeglądając dane dotyczące liczby pacjentów OHIP w latach 2015–2022, Amy Kelly stwierdziła, co następuje dla lat 2021–2022, czyli lat, w których mieszkańcy Ontario otrzymywali szczepionki przeciwko Covid-19. Kanadyjscy lekarze przydzieleni:
Kod OHIP 634 — Zapalenie jąder (zapalenie jąder)/zapalenie najądrza (zapalenie najądrza, zakrzywiona struktura w tylnej części jądra) — do 31 557 różnych pacjentów. To ponad dwukrotnie więcej niż liczba pacjentów, którzy otrzymali ten kod diagnostyczny w 2020 r. – tj. przed wprowadzeniem szczepionek.
Kod OHIP 606 — Niepłodność męska, Oligospermia (niska liczba plemników), Azoospermia (brak plemników w nasieniu) — dla 65 392 unikalnych pacjentów. Oznacza to, że ponad dwukrotnie więcej pacjentów otrzymało ten kod diagnostyczny w porównaniu z rokiem 2020, przed wprowadzeniem szczepionek.
Kod OHIP 614 — Ostre lub przewlekłe zapalenie jajowodu (infekcja powodująca zapalenie jajowodów), zapalenie jajników (zapalenie jajników) lub ropień, zapalenie miednicy mniejszej — dla 15 043 różnych pacjentów, czyli ponad dwukrotnie więcej unikalnych pacjentów niż otrzymało ten kod diagnostyczny w 2020 r., kiedy szczepionki nie były jeszcze dostępne.
Kod OHIP 626 – Zaburzenia miesiączkowania – dla 837 425 różnych pacjentek, czyli ponad 2,25 razy więcej niż liczba osób, które otrzymały ten kod diagnostyczny w roku 2020 poprzedzającym wprowadzenie szczepionek przeciwko CoVID.
Kod OHIP 627 – Menopauza, krwawienie pomenopauzalne – dla 387 741 unikalnych pacjentów, ponad 2,5 razy więcej niż kod 627 w 2020 r., zanim szczepionki przeciwko COVID były publicznie dostępne.
Kod OHIP 628 – Niepłodność – dla 224 900 różnych pacjentów, czyli prawie 2,3 razy więcej niż liczba pacjentów zakodowanych tym kodem diagnostycznym w 2020 r.
Kod OHIP 629 – Inne zaburzenia żeńskich narządów płciowych – dla 227 242 unikalnych pacjentów, czyli ponad 2,5 razy więcej niż ten kod został nadany pacjentom w 2020 r.
Kod OHIP 632 – Nieudana aborcja (czyli poronienie utracone lub samoistna aborcja; poronienie, w którym płód nie powstał lub już się nie rozwija, ale łożysko i tkanki embrionalne nadal znajdują się w macicy matki) – 30 430 różnym pacjentkom, ponad dwukrotnie więcej pacjentów przypisało ten kod w 2020 roku.
Kod OHIP 634 — Aborcja niekompletna, Aborcja całkowita (aborcja niepełna ma miejsce, gdy niektóre produkty zostają zatrzymane w macicy po poronieniu; aborcja całkowita ma miejsce, gdy produkty zapłodnienia miną i szyjka macicy zostanie zamknięta) – dla 44 929 unikalnych pacjentek, ponad w 2020 r. dwukrotnie więcej pacjentów, którzy otrzymali ten kod diagnostyczny przed szczepionką na Covid-19.
Naukowcy z Japonii odkryli, że śmiertelność z powodu raka jest szczególnie podwyższona po „zaszczepieniu” osoby na koronaawirus z Wuhan (COVID-19), a zwłaszcza po otrzymaniu trzeciej dawki „wzmacniającej”.
Na podstawie wyników badania Campbell zauważył, że od 2021 r. do chwili obecnej w Japonii podniósł wzrost śmiertelności ze wszystkich przyczyn. Badanie przeprowadzono w Japonii i dlatego skupiono się wyłącznie na tym kraju, ale wyniki prawie na pewno można ekstrapolować na Stany Zjednoczone i inne „w pełni zaszczepione” kraje.
W sumie badanie wykazało wzrost śmiertelności o 2,1% w 2021 r., a następnie znacznie bardziej znaczący wzrost śmiertelności o 9,6% w 2022 r., czyli roku podania „zastrzyków przypominających”.
W 2020 r., przed operacją Warp Speed i przyspieszonym wprowadzeniem na rynek tak zwanych „szczepionek”, nie odnotowano znaczącej nadmiernej śmiertelności. Jednak w 2021 r. i później, po tym, jak dwie trzecie populacji Japonii otrzymało trzecią „wzmacniającą” dawkę Covid-19, nastąpił znaczny wzrost nadmiernej śmiertelności.
(Powiązane: Czy wiesz, że zastrzyki z Covid-19 osłabiają odporność i oprócz raka powodują zaburzenia mózgu?)
Ludzie umierają z powodu zastrzyków na Covid-19, a nie na Covid-19
W niektórych przypadkach po operacji Warp Speed częstość występowania niektórych nowotworów wzrosła o prawie 10 procent. Poniżej znajduje się zestawienie zachorowań na nowotwory według rodzaju nowotworu:
• Rak jajnika: wzrost o 2,5 procent w 2020 r., 7,6 procent w 2021 r. i 9,7 procent w 2022 r.
• Białaczka: spadek o 0,2 proc. w 2020 r. i wzrost o 1,7 proc. w 2021 r. i 8,0 proc. w 2022 r.
• Rak prostaty: wzrost o 1,2% w 2020 r., 5,3% w 2021 r. i 5,9% w 2022 r.
• Raki jamy ustnej i gardła: spadek o 0,6 procent w 2020 r. i wzrost o 1,3 procent w 2021 r. i 5,5 procent w 2022 r.
• Rak skóry: wzrost o 0,6 procent w 2020 r., 0,1 procent w 2021 r. i 3,2 procent w 2022 r.
• Rak macicy: spadek o 1,1 procent w 2020 r. i 1,3 procent w 2021 r. oraz wzrost o 2,5 procent w 2022 r.
Jak widać, liczba zachorowań na raka rośnie wykładniczo z każdym rokiem od rozpoczęcia Operacji Warp Speed. Oczekuje się, że w roku 2024 i później wzrosty te będą jeszcze bardziej zauważalne.
„Ponownie więc widzimy tę silną czasową korelację pomiędzy dość znacząco zwiększonym… wskaźnikiem zachorowalności na raka jajnika a wprowadzeniem tutaj szczepionek” – skomentował Campbell, nazywając każdą dodatkową korelację „kolejnym «dziwnym zbiegiem okoliczności»”.
„Wszystkie wzrosty zgonów z powodu nowotworów są istotne statystycznie. Nadmiar [zgonów] pojawił się w 2021 r. i ponownie wzrósł w 2022 r. Ponadto znaczną nadwyżkę śmiertelności zaobserwowano po sierpniu 2021 r., podczas gdy masowe szczepienia ogółu populacji rozpoczęły się około kwietnia 2021 r.”
Ponieważ rozwój niektórych rodzajów nowotworów może zająć wiele lat, zostały one wyłączone z badań Campbella, które prawdopodobnie będą rozwijane w nadchodzących latach (o ile świat, jaki obecnie znamy, przetrwa chociaż tak długo).
Od pierwszych dni tak zwanej „pandemii” Dalgleish ostrzegał przed tymi i innymi zagrożeniami związanymi z zastrzykami na bazie RNA – ale niewielu go posłuchało. Obecnie miliony ludzi choruje na raka, a w nadchodzących dniach zachoruje na niego znacznie więcej osób.
„To zbrodnia przeciw ludzkości na niezrównaną skalę” – napisał jeden z komentatorów o czystym złu operacji Warp Speed. „Fakt, że Bill Gates nazywa to «ostatecznym rozwiązaniem», powinien zaniepokoić ludzi” – napisał inny. „Niestety, niewiele osób wie dziś zbyt wiele o Holokauście lub być może przewidziało jego nadejście. Czy sprawcy zostaną osądzeni za swoje zbrodnie? Kto wie, ale jeśli nie sprawiedliwość, z pewnością dosięgnie ich wyrok” [chyba Boga? md].
Jeśli chcesz uzyskać więcej informacji o tym, jak pomóc komuś, kogo znasz, przezwyciężyć szkody zdrowotne zadane mu przez Operację Warp Speed, koniecznie odwiedź stronę Cures.news .
Francja w marcu 2020 r. była jednym z krajów, które w celu powstrzymania pandemii Covid-19, przyjęły najbardziej restrykcyjne zasady lockdownu. Historyk i socjolog Nicolas Mariot przyjrzał się temu eksperymentowi masowego posłuszeństwa:
Wiosną 2020 r. wszystkie rządy znalazły się w tej samej sytuacji w tym samym czasie – musiały, jak powiedział wówczas premier Holandii, podejmować 100% decyzji na podstawie 50% informacji. Państwa członkowskie przyjęły jednak radykalnie różne polityki. W Europie pięć krajów południowych – Francja, Włochy, Hiszpania, Grecja i Cypr – zastosowało jedne z najsurowszych środków, łącznie z zaświadczeniami, poddając wszelkie przemieszczanie się ich ludności surowym zasadom, monitorowanym przez siły porządkowe. Jednocześnie kraje skandynawskie, takie jak Szwecja, Finlandia, Dania, Norwegia i Holandia, a także Szwajcaria i Bułgaria, przyjmując takie same środki zdrowotne jak w innych krajach (noszenie masek, zakaz zgromadzeń, zalecenia dotyczące mycia rąk itp.), pozostawiły obywatelom swobodę przemieszczania się. W rezultacie we Francji liczba osób odwiedzających tereny zielone wiosną 2020 r. była o połowę mniejsza niż zimą, podczas gdy w Danii podwoiła się w tym samym okresie.
W podejściu do ludności ton również był inny. Podczas gdy prezydent Emmanuel Macron czterokrotnie powtórzył 16 marca w swoim przemówieniu do Francuzów słynne zdanie „Jesteśmy w stanie wojny” przeciwko „wrogowi sanitarnemu, co prawda” ale „nieuchwytnemu i postępującemu”, prezydent Republiki Federalnej Niemiec Frank-Walter Steinmeier oświadczył, że „nie, ta pandemia to nie jest wojna”. Holenderskie władze opublikowały natomiast podręcznik komunikacji dotyczący wirusa zakazujący stosowania języka wojennego na rzecz przesłania podkreślającego wymiar zbiorowy walki z Covidem.
We Francji dekretem z 23 marca prefekci i burmistrzowie zostali zachęceni do „wykorzystania w pełni swoich uprawnień policyjnych” i „wprowadzenia bardziej restrykcyjnych środków – niż te podjęte na szczeblu krajowym – gdy okoliczności prawne tego wymagają”. I nie zawahali się skorzystać z tej władzy. Siedemnaście prefektur wprowadziło godziny policyjne dla obywateli, trzydzieści dla sklepów, dziewięć departamentów wybrało obie opcje; ponad dwieście gmin również wprowadziło własne godziny policyjne, które nałożyły się – lub nie – na te prefektur. Ograniczenie przemieszczania się zostało zaostrzone: osiemdziesiąt trzy departamenty nałożyły ograniczenia w dostępie do miejsc natury i relaksu, czasami z absurdalnym uzasadnieniem, jak: „lockdown to nie wakacje!”, lub z dziwacznymi zapisami, jak: „zakaz kupowania bagietki lub jednej gazety naraz”, lub jeszcze: „zakaz siadania na ławkach miejskich”. Te różne dodatkowe środki często prowadziły do zerwania z jedną z fundamentalnych zasad uzasadnienia lockdownu: równości wszystkich wobec zakazów.
Chociaż Włochy były pierwszym europejskim krajem narażonym na wirusa, który podjął drastyczne środki, to kraje, które później przyjęły najbardziej restrykcyjne zasady, nie były bardziej zagrożone pod względem zdrowotnym niż inne. Różnica w reakcji jest wyraźnie związana z przyzwyczajeniami do przymusu ze strony rządów: pokazujemy, że im więcej państwo europejskie ma policjantów na mieszkańca, lub im bardziej przyzwyczajone jest do naruszania wolności publicznych, tym bardziej zamknęło swoją ludność. W związku z pandemią odżyły więc stare nawyki karania populacji. Dla Francji polityka ta prawdopodobnie świadczyła również o braku zaufania władz do zdolności mieszkańców do przestrzegania zalecanej polityki. Kraj ten wyłaniał się z kryzysu „żółtych kamizelek” i manifestacji przeciw reformie emerytalnej, więc rządzący prawdopodobnie obawiali się wrogiej reakcji.
Francja była jednym z niewielu krajów, które wprowadziły słynne pozwolenie samemu sobie na opuszczenie miejsca pobytu (attestation de sortie), które zostało przedstawione jako środek zachęcający ludzi do wzięcia za siebie odpowiedzialności, a które szybko stało się narzędziem masowych kontroli. Przemieniając każdego w swojego własnego policjanta, to właśnie ten system (zapożyczony od Włochów) pozwolił na wyludnienie przestrzeni publicznej. We Francji zostało w tym czasie przeprowadzonych 21 milionów kontroli. W niektórych departamentach liczba kontroli równała się liczbie dorosłych mieszkańców.
Jak wytłumaczyć fakt, że ludność w dużej mierze przestrzegała tych bardzo restrykcyjnych zasad? Są dwie hipotezy wyjaśniające, dlaczego 80% populacji zgodziło się pozostać w domach: strach przed wirusem i strach przed policją. Przeprowadzone badanie (Vico) pokazało, że przez cały ten okres nie więcej niż 50% osób przestrzegało zaleceń zdrowotnych (noszenie maski, mycie rąk itp.). Tak więc sam strach przed wirusem nie wystarczy, aby wyjaśnić masowe przestrzeganie zasad.
Musimy również podkreślić bardziej horyzontalny wymiar posłuszeństwa, jakim jest porównanie z innymi. Faktem jest, że wiele osób chciało dać przykład i/lub upewnić się, że ich sąsiedzi nie korzystają z przywilejów, choćby najmniejszych. Eksplozja liczby donosów w tym okresie (skierowanych do burmistrzów, posterunków policji lub lokalnych stacji radiowych) jest oznaką tej fundamentalnej troski: zasady nie są kwestionowane, o ile ich stosowanie wydaje się nie pozostawiać miejsca na arbitralność. Wreszcie, ważne jest, aby podkreślić usunięcie wszelkiej ludzkiej obecności z przestrzeni publicznej: bary i parki były zamknięte, plaże i lasy zakazane, a nocne oświetlenie często wyłączone. Wszystkie te środki doprowadziły do tego, co nazwaliśmy „obawą przed byciem na zewnątrz”. W szczególności dla kobiet wyjście w opuszczone miejsce stało się niepokojącym doświadczeniem z obawy przed światem zewnętrznym, który stał się nieprzyjazny.
Wszyscy widzieliśmy przerażające obrazy Chińczyków uwięzionych lub brutalnie wyrzucanych ze swoich domów, trzeba jednak zwrócić uwagę na znaczną różnicę między Chinami a Francją: w Chinach to zawsze motyw zdrowotny decyduje o ustanowieniu nowych zasad. Lockdown jest stosowany w różnych prowincjach sukcesywnie w zależności od rozprzestrzeniania się epidemii i różnie w zależności od statusu osób – „negatywny”, „kontakt” lub „zakażony”. W przeciwieństwie do Francji, nigdy nie dotyczy wszystkich obywateli jednocześnie i w tym samym wymiarze.
Byłem bardzo zaskoczony, widząc, że nie tylko żadne duże media, ale także żaden zespół badawczy we Francji, a nawet, o ile się nie mylę, w Europie, nie był zainteresowany podsumowaniem tego okresu, nie z punktu widzenia zdrowia, ale z punktu widzenia regulacji. A przecież z tego doświadczenia można wyciągnąć wiele wniosków – nie jesteśmy bowiem odporni na kolejną pandemię. Co więcej, z perspektywy czasu widzimy, że lockdown, który zostało zaakceptowany, ponieważ dotyczył wszystkich, niezależnie od klasy społecznej, wieku, poziomu dochodów czy miejsca zamieszkania, był w rzeczywistości stosunkowo nierówny w sposobie jego stosowania, ze względu na dużą swobodę daną władzom lokalnym oraz siłom porządkowym. Wreszcie, jako historyk specjalizujący się w wojnie 1914-1918, badałem już taki eksperyment posłuszeństwa na dużą skalę. I byłem zaskoczony, że nowa forma świętej unii uzasadniająca zawieszenie wolności i niekontrolowanego rządu może zostać powtórzona niemal identycznie sto lat później.
W czasie, gdy w Polsce sądy lekarskie karzą tych, którzy wyłamywali się od głoszenia jedynie słusznej narracji w sprawach pandemicznych, europejska prokuratura zaczyna aresztowania covidowych aferzystów.
600 milionów euro – tyle, zdaniem europejskiej prokuratury, zdefraudowano w jednym tylko z wątków pomocy wypłacanej przez Unię Europejską na odbudowę gospodarek zniszczonych pandemią koronawirusa. To pierwsze międzynarodowe śledztwo, które doprowadziło do aresztowań wpływowych urzędników – nieformalnych beneficjentów wielkiej afery. Śledztwo w sprawie nadużyć związanych z okresem pandemii zatacza coraz szersze kręgi, a pod lupą prokuratury znalazła się nawet sama szefowa Komisji Europejskiej – Ursula von der Leyen. Gdy w krajach UE prokuratura przystępuje do rozliczania tej afery – być może największej w historii Eurosojuzu – w Polsce trwa akcja wykluczania niezależnych medyków z zawodu.
Do aresztu
Oficjalny komunikat Prokuratury Europejskiej, brzmi: 4 kwietnia władze aresztowały 22 osoby w czterech krajach europejskich w ramach śledztwa w sprawie podejrzenia oszustwa na kwotę 600 milionów euro związanego z odzyskaniem środków pieniężnych z tytułu Covid-19, podała prokuratura (…). W wyniku dochodzenia w sprawie rzekomej siatki przestępczej, która przypuszczalnie przejęła fundusze, przeprowadzono dziesiątki nalotów i aresztowań we Włoszech, Austrii, Rumunii i na Słowacji. Organizacja przestępcza jest „podejrzana o wyłudzenie 600 milionów euro z unijnego Instrumentu na rzecz Odbudowy i Zwiększania Odporności (RRF) dla Włoch.
Z oficjalnych informacji, podanych przez biuro europejskiej prokuratury z siedzibą w Luksemburgu wynika, że Guardia di Finanza – włoska policja zwalczająca przestępczość finansową – na polecenie prokuratury zamroziła 600 milionów euro w bankach, na kontach należących do osób podejrzewanych o przestępstwa. Na razie zarzuty w sprawie usłyszały 22 osoby, z czego osiem trafiło do aresztu, 14 umieszczono w areszcie domowym, a jednemu (księgowemu) zakazano wykonywania zawodu. Według śledczych podejrzani stworzyli grupę przestępczą, aby wyłudzić część środków przeznaczonych dla Włoch w ramach odbudowy gospodarki dotkniętej pandemią Covid-19.
O co dokładnie chodziło? W 2022 roku UE stworzyła program RRF, aby dofinansować kraje, których gospodarki najbardziej ucierpiały w wyniku pandemii koronawirusa. Przeznaczono na to 720 miliardów euro. Jednym z głównych beneficjentów programu były Włochy wskazane przez UE jako kraj najbardziej dotknięty pandemią. Tyle, że z całej puli przyznanej dla Italii, 660 milionów euro trafiło do prywatnych osób i związanych z nimi spółek. Było to możliwe dzięki fikcyjnej dokumentacji uzasadniającej przepływy pieniężne. Teraz wielka afera skończy się na salach sądowych.
Na celowniku
To jednak nie najgłośniejszy wątek afery covidowej. Ta sama Prokuratura Europejska wszczęła również śledztwo dotyczące decyzji podejmowanych przez szefową KE – Ursulę von der Leyen. Chodzi o zakup 2 miliardów szczepionek przeciw koronawirusowi. Decyzję tę podjęła właśnie von der Leyen w najważniejszym okresie pandemii. Prokuratorzy zdobyli dowody, iż w czasie, gdy badania nad szczepionką jeszcze trwały, von der Leyen negocjowała umowę wartą dziesiątki miliardów euro za pomocą SMS-ów wymienianych z prezesem koncernu Pfizer – Albertem Bourlą. Sama von der Leyen przyznała, że zna Bourlę i spotykała się z nim, natomiast odmówiła ujawnienia treści SMS-ów twierdząc, że nie może ich znaleźć w telefonie. Sprawa jest tym bardziej śmierdząca, że koncern Pfizer jest właścicielem spółki, w której dyrektorem jest Heiko von der Leyen – prywatnie mąż szefowej KE. Oficjalne skargi przeciwko decyzjom von der Leyen zgłosiły rządy Polski, Słowacji i Węgier, jednak nasz kraj oficjalnie skargę wycofał, po tym gdy szefem rządu został Donald Tusk. Co jeszcze ustaliła europejska prokuratura – tego nie wiadomo. Jednak wszystko wskazuje na to, że mamy właśnie do czynienia z ogromną aferą polityczno-kryminalną i być może największą aferą korupcyjną w historii Unii Europejskiej.
Niewygodne tematy
To, co wiemy o kulisach śledztw europejskiej prokuratury, dowiedzieliśmy się dzięki pracy dziennikarzy Financial Times i Politico. Nie wiadomo, czy wątki afery covidowej obejmują również Polskę. A w naszym kraju również byłoby co badać. Pilnego rozliczenia wymaga zakup respiratorów przez wiceministra Cieszyńskiego. Dostawcą miała być firma należąca do handlarza bronią – Andrzeja Izdebskiego. Zniknęło około 60 milionów złotych, sam zaś handlarz wyjechał do Albanii i tam – według oficjalnej wersji – zmarł, ale zrobił to w taki sposób, że nie wiadomo, czy skremowano jego, czy kogoś innego. Osobny wątek śledztwa powinien dotyczyć nadużyć władzy przy okazji pandemii, w tym niszczenia biznesów (zwłaszcza gastronomicznego). Tyle, że polska prokuratura nie kwapi się do tego działania.
Zamknąć usta
A jakie sprawy toczą się w związku z pandemią przed polskimi sądami? Analizując oficjalne komunikaty prokuratury, dochodzi się do wniosku, iż sprawy covidowych nadużyć nie są traktowane priorytetowo. Kierowana przez Adama Bodnara prokuratura zajmuje się ściganiem lekarzy odmawiających dokonywania aborcji, rozbijaniem zespołu śledczego wyjaśniającego tragedię smoleńską oraz, co istotne, wprowadzaniem przepisów sankcjonujących tzw. „mowę nienawiści”. Sprawy covidowe zajmują natomiast sądy lekarskie.
11 kwietnia przed Naczelnym Sądem Lekarskim odbyła się rozprawa odwoławcza w procesie doktora Zbigniewa Martyki – wirusologa, którego w grudniu 2022 Okręgowy Sąd Lekarski w Krakowie pozbawił na rok prawa do wykonywania zawodu. Powodem były wypowiedzi Martyki sceptyczne wobec przymusu szczepień i niezgodne z jedynie słuszną linią obowiązującą w środowisku lekarskim. Przewodniczącym składu sędziowskiego był prof. zw. dr hab. n. med. Waldemar Hładki (specjalizacje: chirurgia ogólna, ortopedia i traumatologia, medycyna ratunkowa). Członkowie sądu to lek. Anna Szeliga (internistka) oraz lek. Bohdan Szpak (chirurg). W roli oskarżyciela wystąpił lek. Jerzy Sławiński (medycyna ratunkowa). Żadna z w/w osób nie miała nic wspólnego ze specjalizacją z chorób zakaźnych.
Akt oskarżenia przeciwko Martyce został napisany na podstawie opinii biegłego – dra Pawła Grzesiowskiego (pediatry). Grzesiowski został powołany na biegłego jako immunolog, tymczasem okazało się, że zlecenie od Okręgowego Sądu Lekarskiego wprawdzie przyjął, ale specjalizacji z dziedziny immunologii nigdy nie miał. W tak grubymi nićmi szytej sprawie nawet sąd lekarski nie miał innego wyjścia, jak odrzucić ekspertyzę Grzesiowskiego. W tej sytuacji w aktach sprawy nie znalazł się żaden dowód obciążający Martykę.
Przed tym samym Naczelnym Sądem Lekarskim stanęła również dr hab. n. med. Dorota Sienkiewicz – prezes Polskiego Stowarzyszenia Niezależnych Lekarzy i Naukowców. Także ona odwołała się od decyzji Sądu Lekarskiego w Białymstoku, który na okres 1 roku zakazał jej wykonywania zawodu. Powodem było to, że prof. Sienkiewicz skierowała w 2022 roku do młodych Polaków apel ostrzegający ich przed eksperymentalnymi preparatami inżynierii genetycznej zwanych mylnie szczepionką przeciw Covid-19. Prof. Sienkiewicz podnosiła, że te preparaty są „nieskuteczne, niebezpieczne i nienależycie przebadane”.
To, co najbardziej szokuje, to fakt, iż żaden z członków gremium sędziowskiego orzekającego w sprawie pani profesor Sienkiewicz nie widział powodu, aby wyłączyć się ze względu na brak obiektywizmu. A brak ten wynika z tego, że część sędziów, mająca wydać wyrok w sprawie, korzysta ze środków finansowych pochodzących od koncernów farmaceutycznych. Jedną z nich jest rzecznik dyscyplinarny białostockiej Izby Lekarskiej, która wnioskowała o ukaranie doktor Sienkiewicz. Rzecznik tylko w jednym roku otrzymała 12 tysięcy złotych od Astra Zeneca (ustalenia Jana Pospieszalskiego).
Wielka patologia
Opisane procesy sądowe mają tę dobrą stronę, że pokazują dwie gigantyczne patologie: korupcyjne związki części środowiska lekarskiego z producentami leków oraz nadmierne rozpasanie sądów lekarskich, które arbitralnie decydują o tym, kto ma, a kto nie ma prawa do wykonywania zawodu. Tymczasem o tym ostatnim powinien decydować przede wszystkim pacjent, a nie skorumpowane sądownictwo medyczne.
A vaccine so good it makes you blind within 8 hours. This is unbelievable. mRNA is poison
They Keep Saying Its Rare @mRNAdeaths
A 47-year-old man presented with visual loss in the right eye 8 h after the first dose of the #Pfizer #mRNA vaccine. https://karger.com/cop/article/14/1/234/843907/Central-Retinal-Vein-Occlusion-after-mRNA-COVID-19?searchresult=1
„Jeśli znasz osobę, która została uszkodzona w wyniku szczepionki przeciwko Covid-19, podnieś jedną rękę do góry. Jeśli znasz więcej niż jedną osobę, podnieś obie ręce do góry” Obejrzyj reakcję…
This lady asks a room full of people in Canada : “If you know a person that has been injured by the COVID vaccine, lift one hand up. If you know more than one person, lift two hands up” Watch this shocking response from the crowd
Szokujące statystyki, niezauważalnie, prawie potajemnie opublikowane przez amerykańskie Centra Kontroli Chorób (CDC), ujawniają, że od czasu, gdy Agencja ds. Żywności i Leków (FDA) wydała zezwolenie na użycie w sytuacjach nadzwyczajnych (EUA) [Emergency Use Authorisation szczepionki wirusa Covid, odnotowano ponad milion dodatkowych zgonów wśród osób w wieku 65 lat i starszych.
W dniu 11 grudnia 2020 r. FDA wydała zezwolenie na użycie pod kontrolą (EUA) Emergency Use Authorisation szczepionki Pfizer-BioNTech przeciwko Covid-19, co czyni ją pierwszą szczepionką na Covid-19, która otrzymała takie zezwolenie w Stanach Zjednoczonych.
Następnie szczepionka Moderna Covid-19 otrzymała EUA 18 grudnia 2020 r., a szczepionka Janssen (Johnson & Johnson) Covid-19 otrzymała EUA 27 lutego 2021 r.
W pierwszej kolejności zaproponowano szczepionkę na Covid-19 osobom starszym, a liczba odnotowanych dodatkowych zgonów była zdumiewająca. W ciągu pierwszych 20 tygodni 2021 r. odnotowano 150 085 dodatkowych zgonów wśród osób w wieku powyżej 65 lat w porównaniu ze średnią z pięciu lat od 2015 do 2019 r.
Następnie od 21. do 40. tygodnia 2021 r. odnotowano zdumiewającą liczbę 165 387 dodatkowych zgonów wśród osób w wieku 65 lat i starszych. Spowodowało to, że łączna nadwyżka zgonów od 1. do 40. tygodnia 2021 r. wyniosła 315 472 wśród osób, które z największym prawdopodobieństwem otrzymały szczepionkę “przeciwko Covid-19”.
W pozostałej części 2021 r. odnotowano 133 268 dodatkowych zgonów. Zwiększenie całkowitej nadwyżki zgonów w ciągu roku wśród osób powyżej 65. roku życia do 448 740.
Oznacza to, że w okresie, w którym spodziewano się radykalnego ograniczenia nadmiernej liczby zgonów, w związku z podaniem pozornie bezpiecznej i skutecznej szczepionki w celu powstrzymania fali zgonów rzekomo spowodowanych śmiercionośną chorobą, zmarło prawie pół miliona więcej osób w wieku 65 lat i więcej, niż oczekiwano.
Rok 2022 poprawił nieznacznie te dane, ale nadal odnotował szokującą liczbę nadmiernych zgonów – 371 466 odnotowano wśród osób w wieku powyżej 65 lat.
W 2023 r. odnotowano 257 415 dodatkowych zgonów wśród osób w wieku 65 lat i starszych, przy czym najnowsze dane opublikowane przez CDC potwierdzają, że jedynie w pierwszym tygodniu 2024 r. odnotowano 5482 nadmierne zgonów.
Oznacza to, że ogółem odnotowano 1 069 943 dodatkowych zgonów wśród osób w wieku powyżej 65 lat od chwili, gdy po raz pierwszy zaproponowano im szczepionkę przeciwko Covid-19 do 1. tygodnia 2024 r.
To szokująca liczba nadmiernych zgonów w porównaniu ze średnią pięcioletnią w latach 2015–2019. Szczepionki na Covid-19 miały zmniejszyć liczbę zgonów, a nie ją zwiększyć.
Zdumiewająca liczba dodatkowych zgonów, sięgająca ponad miliona w ciągu trzech lat, to więcej niż wystarczający dowód na to, że szczepionki przeciwko Covid-19 są dalekie od bezpieczeństwa i skuteczności. Publikowane po cichu dane dowodzą, że te szczepionki są niezwykle niebezpieczne.
W USA osobom w wieku powyżej 65 lat zaproponowano kilka szczepionek przeciwko Covid-19 w ramach zezwolenia na użycie pod kontrolą (EUA) Emergency Use Authorisation
Początkowo szczepionki te były przeznaczone przede wszystkim dla osób starszych, między innymi ze względu na rzekome wyższe ryzyko ciężkiej choroby wywołanej przez „COVID-19”.
Z biegiem czasu zalecono także dawki przypominające, ponieważ zastrzyki wyraźnie nie działały. Gdyby były skuteczne, czy odnotowano by ponad milion dodatkowych zgonów wśród osób, które otrzymały więcej zastrzyków niż jakakolwiek inna grupa wiekowa?
This table displays the countermeasure, injury, and amount of compensation paid for each compensated CICP claim filed between Fiscal Years 2010 and 2024.
Please note that the number column within the tables are not assigned numbers for a particular claim, but reflect the number of listed items in a given table. Further details concerning the table contents are provided below.
Chorował na COVID-19 … 613 dni. Wirus mutował w nim 50 razy. Po dwóch latach pacjent zmarł
===========================
[A mogli i powinni na początku choroby dać Amantadynę – by od razu wyzdrowiał. Jeśli nie wiedzieli, jak – powinni zadzwonić do dr. Bodnara, by ich nauczył. Mirosław Dakowski]
Niderlandzki pacjent chorował na COVID-19 przez niemalże dwa lata. Mężczyzna zmarł jesienią ubiegłego roku. Teraz lekarze tłumaczą jego przypadek.
Przez 613 dni choroby koronawirus mutował w jego ciele aż 50 razy. Pacjent z Niderlandów zachorował na COVID-19 w 2022 roku.
Naukowcy z Centrum Medycyny Eksperymentalnej i Molekularnej Uniwersytetu w Amsterdamie informują, że w zaledwie kilka tygodni wirus w ciele tego mężczyzny wytworzył odporność na lekarstwa stosowane przy lecczeniu koronawirua.
Mężczyzna przyjął kilka szczepionek, ale jego organizm nie był w stanie wytworzyć wystarczającej liczby białych krwinek i przeciwciał.
Lekarze zmieniali leki, ale wirus za każdym razem mutował i zdobywał na nie odporność. Jak to możliwe? Jeszcze przed zachorowaniem na COVID-19, pacjent cierpiał na chorobę hematologiczną i to prawdopodobnie ona jest winna całej sytuacji.
Ostatnią z 50. mutacji lekarze ochrzcili mianem „Frankenstein”. Teraz zapewniają, że nie ma żadnych dowodów na to, by „Frankenstein” „wydostał się” z ciała chorego Holendra i przeniósł na kogoś innego.
Jednocześnie podkreślają, że gdyby do tego doszło, to mogłoby to być niezwykle niebezpieczne dla zdrowia publicznego.
[Nie znam tego słowa – więc czytam: “Dashboard jest specyficznym rodzajem raportu, na którym najważniejsze informacje i wskaźniki powiązane z celami firmy lub organizacji przedstawione są w formie wizualnej’ md]
Globalny wpływ, którego zbudowanie zajęło “zaledwie kilka godzin”
W styczniu 2020 r. miało miejsce wiele wydarzeń, które są, delikatnie mówiąc, osobliwe. Jednym z nich jest to, że zaledwie 23 dni po tym, jak Chiny poinformowały, że znalazły kilka przypadków “nieznanego zapalenia płuc” w mieście Wuhan, trzy osoby w Baltimore Maryland uruchomiły pulpit nawigacyjny, który został zaprojektowany w celu śledzenia liczby przypadków i zgonów z powodu tej choroby w każdym kraju na świecie. Wszyscy trzej byli związani z Wydziałem Inżynierii Cywilnej i Systemowej na Uniwersytecie Johna Hopkinsa (JHU). Według ich własnych słów, dashboard “został opracowany w celu zapewnienia naukowcom, organom zdrowia publicznego i ogółowi społeczeństwa przyjaznego dla użytkownika narzędzia do śledzenia epidemii w miarę jej rozwoju”[1]. Wraz z pulpitem nawigacyjnym prowadzili również publiczne repozytorium danych o przypadkach i zgonach[2].
Uruchomienie 22 stycznia nastąpiło tak wcześnie na osi czasu Covid, że pierwszy raport sytuacyjny WHO został opublikowany zaledwie poprzedniego dnia, a termin “Covid” nie został jeszcze nawet ukuty. W pierwszym raporcie WHO ogłoszono, że “282 potwierdzone przypadki 2019-nCoV zostały zgłoszone z czterech krajów, w tym z Chin”[3]. Całkowita liczba przypadków poza Chinami wynosiła tylko cztery, a liczba zgonów wynosiła zero. W rzeczywistości tylko sześć zgonów zostało oficjalnie powiązanych z wirusem do tego dnia, a wszystkie z nich pochodziły z Wuhan.
Dla celów porównawczych i aby spojrzeć na to z innej perspektywy, szacuje się, że norowirus zaraża 685 milionów ludzi i powoduje 212 000 zgonów każdego roku[4]. Nie jest nam znany żaden pulpit informacyjny norowirusa gdziekolwiek na świecie.
Chociaż może to być dziwne, że zespół z JHU zdecydował się stworzyć i uruchomić pulpit nawigacyjny dla nienazwanej choroby pomimo tak niskiej liczby przypadków i zgonów w tak niewielu krajach, istnieją możliwe wyjaśnienia, dlaczego to zrobili. Zaledwie 3 miesiące wcześniej JHU był gospodarzem Event 201, “ćwiczeń szkoleniowych… opartych na fikcyjnym scenariuszu” nowego koronawirusa powodującego globalną i śmiertelną pandemię[5]. Co więcej, główny autor pulpitu nawigacyjnego (profesor Lauren Gardner) jest specjalistą w modelowaniu chorób zakaźnych. Niezależnie od tego, co mogą sugerować te fakty, dashboard był, przynajmniej według ich własnych zeznań, wynikiem decyzji podjętej “pod wpływem chwili”, a jego stworzenie zajęło “zaledwie kilka godzin”[6].
Pomimo tego pośpiesznego początku, nowa strona internetowa[7] z pewnością przyciągnęła wiele uwagi w krótkim czasie, szybko stając się główną witryną z danymi dla mediów, badaczy medycznych, władz zdrowotnych i ogółu społeczeństwa, nie tylko w USA, ale także na całym świecie[8, 9]. W ciągu dwóch miesięcy od uruchomienia strona była podobno “odwiedzana 1,2 miliarda razy dziennie”[10], co stanowi prawie połowę ruchu internetowego giganta Google. W ciągu dwóch lat była cytowana przez badaczy medycznych w ponad 8 500 artykułach[11].
“Tablica Hopkinsa stała się wszechobecnym i zaufanym punktem odniesienia, cytowanym przez amerykańskie agencje federalne i główne źródła wiadomości”[12].
Biorąc pod uwagę, jak duży wpływ wywarła tablica rozdzielcza JHU na świat podczas wydarzenia Covid, należy ją szczegółowo zbadać. W szczególności omawiamy tutaj niektóre trudności związane z pozyskiwaniem danych w czasie rzeczywistym, źródła, z których korzystali w celu uzyskania tych danych, sposób, w jaki wprowadzali dane do swojego systemu, bariery językowe związane z tym procesem i wreszcie rolę, jaką mogły odegrać symulacje komputerowe. Artykuł uzupełnia przykład z jednego konkretnego miasta, a mianowicie Nowego Jorku.
Uzyskiwanie danych w czasie rzeczywistym
Nawet z pomocą nowoczesnych komputerów, uzyskanie wiarygodnych danych dotyczących śmiertelności zajmuje zazwyczaj wiele miesięcy (a nawet lat). Na przykład ostatni rok, dla którego dostępne są oficjalne dane dotyczące śmiertelności z wszystkich przyczyn w Kanadzie, to dopiero rok 2020. Krajowy urząd statystyczny, StatsCan, szybko wskazuje, że “opóźnienia w raportowaniu” i “niekompletne dane” są odpowiedzialne za trzyletni wysiłek[13]. Jeśli obecnie organizacja finansowana ze środków federalnych, taka jak StatsCan, publikuje dane dotyczące śmiertelności w ciągu dwóch lub trzech lat, to w jaki sposób JHU mogła uzyskać dane dotyczące zgonów z powodu Covid w czasie rzeczywistym?
Równie trudne jest tworzenie statystyk dotyczących jednego konkretnego patogenu lub wirusa. Na przykład, siedem miesięcy po zakończeniu sezonu grypowego 2017/2018, CDC w USA nadal podawało jedynie szacunkowe dane dotyczące zachorowań i zgonów. Powodem było to, że “dane dotyczące praktyk testowania i zgonów z sezonu 2017-2018” nie były jeszcze dostępne[14]. Data tego oświadczenia to 22 listopada 2019 r. Dokładnie dwa miesiące później pulpit informacyjny JHU został uruchomiony, obiecując informacje o przypadkach i zgonach w czasie rzeczywistym z powodu nowo odkrytego wirusa układu oddechowego, który jest podobny do grypy. Jeśli uzyskanie danych dotyczących śmiertelności i przypadków grypy zajmuje miesiące lub lata, to w jaki sposób możliwe było uzyskanie danych dotyczących Covid w czasie rzeczywistym? Jeśli nie było to możliwe w 2019 r., to w jaki sposób nagle stało się to możliwe w 2020 r.?
Oczywiście na świecie jest wiele krajów, w których raportowanie danych jest niewiarygodne nawet w najlepszych czasach. Podobnie baza danych Human Mortality Database, która śledzi śmiertelność w poszczególnych krajach, jest regularnie opóźniona o dziesięć lat w przypadku wielu krajów[15]. Jak zatem JHU spodziewał się, że będzie w stanie wykreślić zgony z powodu Covid dla każdego kraju na świecie w czasie rzeczywistym? Co ważniejsze, w jaki sposób mogli aktualizować swój pulpit nawigacyjny “co 15 minut”? [1, 16]
Źródła danych dla JHU Dashboard
Dobre dane zależą od dobrych źródeł, a jedynym sposobem na zrozumienie, w jaki sposób pulpit nawigacyjny JHU uzyskał dane w czasie rzeczywistym, jest zbadanie ich źródeł. Istotne jest to, że ich źródła zmieniały się w czasie. Początkowo ich głównym źródłem danych była “DXY, platforma internetowa prowadzona przez członków chińskiej społeczności medycznej, która agreguje lokalne media i raporty rządowe, aby zapewnić skumulowane sumy przypadków COVID-19 w czasie zbliżonym do rzeczywistego na poziomie prowincji w Chinach i na poziomie kraju w innych przypadkach”[1]. Źródło to było zatem połączeniem wiadomości i raportów rządowych.
Ostatecznie zespół w JHU uznał, że DXY zajmuje zbyt dużo czasu, aby uzyskać i opublikować dane, więc rozszerzyli swoją działalność o inne źródła: “Aby zidentyfikować nowe przypadki, monitorujemy różne kanały Twittera, internetowe serwisy informacyjne i bezpośrednią komunikację wysyłaną za pośrednictwem pulpitu nawigacyjnego”. W miarę jak agencje zdrowia na całym świecie tworzyły własne pulpity nawigacyjne, JHU włączył je do swojej listy źródeł[2].
W związku z tym JHU uznała trzy podstawowe źródła informacji inne niż oficjalne strony rządowe:
kanały Twittera
internetowe serwisy informacyjne
bezpośrednia komunikacja wysyłana do dashboardu
Zgodnie z naszą najlepszą wiedzą, nie podano żadnych szczegółów dotyczących którejkolwiek z tych trzech kategorii źródeł. Wszystkie trzy mogą potencjalnie zawierać nieprawidłowe, przesadzone lub całkowicie sfabrykowane informacje. Żadne z nich nie jest publicznie wiarygodne ani nie podlega niezależnej weryfikacji. Nie podano żadnych szczegółów dotyczących tego, kto mógł lub komunikował się bezpośrednio z JHU.
Przeszukiwanie Internetu w poszukiwaniu wiadomości o Covid z pewnością może przyspieszyć proces gromadzenia danych. Niestety, oprócz wyżej wymienionych problemów, wprowadza to również możliwość pętli sprzężenia zwrotnego wzmacniającej hałas. W końcu, jeśli “główne źródła wiadomości” ufały JHU w zakresie dokładnych danych, to w jaki sposób JHU mogło uzyskać swoje dane z (potencjalnie) tych samych źródeł wiadomości?
Duplikaty
Ponadto, nawet zakładając, że wszystkie źródła wykorzystane przez JHU były dokładne, zadanie “łączenia wielu źródeł danych jest złożonym procesem”[17]. Jednym z istotnych wyzwań jest sposób radzenia sobie z duplikatami. Za każdym razem, gdy informacje są uzyskiwane z więcej niż jednego źródła, możliwe jest, że to samo zdarzenie zostanie policzone dwukrotnie. W końcu serwisy informacyjne nie zawierają identyfikatorów zdrowotnych osób wspomnianych w swoich artykułach. W jaki sposób JHU eliminowała duplikaty danych? Czy oznacza to, że liczba przypadków Covid i zgonów zgłoszonych przez pulpit nawigacyjny mogła być dwa, trzy lub wiele razy wyższa niż w rzeczywistości w niektórych regionach? Rzeczywiście, zdarzały się sytuacje, w których użytkownicy danych byli przekonani, że tablica zawiera duplikaty[18]. Na przykład 11 marca 2020 r. jeden z użytkowników repozytorium danych JHU napisał: “Wstawianie zduplikowanych danych do strumienia, który nigdy wcześniej ich nie zawierał, stanowi wyzwanie. Raportowanie zarówno na poziomie stanu, jak i miasta w tej samej kolumnie z pewnością spowoduje problemy”[18a]. Na co inny użytkownik odpowiedział: “CSSE wydaje się podwójnie liczyć przypadki i zgony”[18b]. CSSE (“Center for Systems Science and Engineering”) to akronim wydziału JHU, który zarządzał repozytorium danych.
Worldometer jako źródło danych
JHU wyraźnie wymienia Worldometer jako jedno ze swoich źródeł[2]. Sam Worldometer potwierdza ten fakt, mówiąc: “Nasze dane są również zaufane i wykorzystywane przez… Johns Hopkins CSSE”[19]. Ogólnie rzecz biorąc, Worldometer wykorzystuje symulacje komputerowe do raportowania informacji statystycznych w czasie rzeczywistym. Ich symulacje opierają się na rocznych sumach i szacunkach komputerowych. Na przykład, jeśli milion osób ginie co roku w wypadkach samochodowych, to średnio jedna osoba ginie co 31,6 sekundy. Pulpit nawigacyjny Worldometer dla wypadków po prostu dodawałby odpowiednio jedną nową śmierć, niezależnie od tego, czy ktoś faktycznie zginął w tym czasie. Oczywiście Worldometer nie miałby możliwości dowiedzenia się, czy ktoś zginął.
Czy Worldometer używał obliczeń komputerowych do określenia statystyk Covid w sposób podobny do tego, co robią w przypadku wypadków samochodowych? Jeśli tak (i ponieważ nie mogli znać rocznych sum z wyprzedzeniem), czy używali modeli epidemiologicznych, a nie rzeczywistych zgonów, aby oszacować, ile osób umrze w danym roku z powodu Covid? Na żadne z tych pytań nie można odpowiedzieć z całą pewnością. Ich lista źródeł obejmuje tylko instytucje rządowe[19]. Ponieważ jednak pełna lista źródeł nie jest dostępna i ponieważ nie zaprzeczają oni wyraźnie, że używali algorytmów komputerowych, jest całkiem prawdopodobne, że Worldometer używał modeli komputerowych do generowania statystyk Covid. Jest to tym bardziej pewne, że rządy nie byłyby w stanie generować informacji o Covid w czasie rzeczywistym.
W maju 2020 r. CNN opublikowała interesujący artykuł informacyjny, który podkreślił mylący charakter relacji między tablicą rozdzielczą JHU a Worldometer[20]. Odpowiedzi JHU na pytania zadane im w ramach przygotowań do tego artykułu były nieco wymijające i pozostawiły więcej pytań niż odpowiedzi[21].
Podstawowym pytaniem, które pozostaje oczywiście bez odpowiedzi, jest to, dlaczego JHU używał Worldometer jako źródła w pierwszej kolejności? Skoro JHU wykorzystał Worldometer jako źródło, czy oznacza to, że dane leżące u podstaw pulpitu nawigacyjnego JHU były również oparte na modelach komputerowych, a nie na rzeczywistych wydarzeniach? Częściowym powodem, dla którego tak trudno jest odpowiedzieć na którekolwiek z tych pytań, jest fakt, że kod używany przez dashboard nie był open source, co jest często zarzutem stawianym platformie przez użytkowników[22]. Innym powodem jest to, że dane były często wprowadzane do systemu bez wyjaśnienia lub możliwych do zweryfikowania odniesień.
Wprowadzanie danych do systemu
Zgodnie z artykułem Gardner i wsp. w czasopiśmie Lancet, przez pierwsze dziesięć dni po uruchomieniu pulpitu nawigacyjnego JHU “wszystkie dane były gromadzone i przetwarzane ręcznie, a aktualizacje były zazwyczaj wykonywane dwa razy dziennie”[1]. Z logistycznego punktu widzenia było to wykonalne, ponieważ w tym okresie było tak niewiele przypadków i zaangażowanych było tylko kilka krajów.
Jeśli chodzi o dokładność danych, twierdzili oni, że “[przed] ręczną aktualizacją pulpitu nawigacyjnego potwierdzamy liczbę przypadków w regionalnych i lokalnych departamentach zdrowia… a także w miejskich i stanowych organach ds. zdrowia”. Ustalono już jednak, że ani Kanada, ani Stany Zjednoczone nie były w stanie przedstawić danych dotyczących śmiertelności lub grypy w ciągu sześciu miesięcy. W jaki sposób zatem nie tylko Kanada i USA, ale ostatecznie każdy kraj na świecie, dostarczał dzienne liczby przypadków i zgonów, które JHU mógł wykorzystać do weryfikacji?
Próbując odpowiedzieć na to ostatnie pytanie, zbadano strony internetowe Statistics Canada, aby zobaczyć, w jaki sposób uzyskali dane dotyczące Covid. Stwierdzono, że StatsCan zrobił to samo, co zespół JHU, ponieważ wykorzystał również “techniki skanowania stron internetowych w celu zebrania odpowiednich danych z różnych stron internetowych na temat COVID-19″[23]. Ponieważ nie podano informacji o tym, które strony internetowe zostały przeskanowane, wysłałem e-mail do StatsCan, aby uzyskać listę. Ich uprzejma odpowiedź brzmiała: “Statistics Canada nie będzie mieć pełnej ostatecznej listy wszystkich potencjalnych stron internetowych wykorzystywanych w web-scrapingu podczas pandemii”. Podano dwa powody: po pierwsze, zaangażowanych było kilka działów, z których każdy miał inne procedury, a po drugie, kwestie poufności. StatsCan zasugerował skontaktowanie się z Kanadyjską Agencją Zdrowia Publicznego (PHAC). Jednak PHAC polegał na StatsCan w zakresie informacji, a StatsCan zajmował się skanowaniem stron internetowych, a nie PHAC[23]. Czy ta odpowiedź oznacza, że StatsCan nie wie, skąd wzięli dane dotyczące Covid? A może oznacza to, że wiedzą i nie chcą dzielić się swoimi źródłami z opinią publiczną?
Odpowiedź od StatsCan pozostawia pytanie, czy ich informacje pochodzą z pulpitu nawigacyjnego JHU. Biorąc pod uwagę, jak popularny stał się pulpit nawigacyjny JHU, że został wyraźnie zaprojektowany, aby umożliwić organom służby zdrowia śledzenie wybuchu epidemii, że był cytowany przez amerykańskie agencje federalne, że był szeroko stosowany przez badaczy medycznych i że StatsCan skrobał sieć, aby uzyskać ich dane, jest całkiem prawdopodobne, że StatsCan to zrobił. Nawet jeśli Kanada tego nie zrobiła, jest więcej niż prawdopodobne, że niektóre kraje przyjęły dane JHU jako własne. W jaki sposób JHU mógł potwierdzić swoje dane z organami służby zdrowia, jeśli te same organy służby zdrowia otrzymywały dane od JHU?
W związku z tym istnieje bardzo realna możliwość, że JHU przesłał dane do swojego pulpitu nawigacyjnego, niektóre kraje wykorzystały i opublikowały te informacje na swoich stronach internetowych, a następnie JHU potwierdził swoje wpisy, porównując ich liczby z tymi na oficjalnych stronach rządowych. Jeśli tak się stało, to jest to rozumowanie cyrkularne w najlepszym wydaniu. Niestety, nie ma sposobu, aby udowodnić, czy tak się stało, czy nie. Tak czy inaczej, wciąż zastanawiamy się, z jakich źródeł korzystał JHU.
Automatyczne aktualizacje
Niezależnie od źródeł, ręczne aktualizacje zostały wkrótce zakończone na rzecz automatyzacji:
“Ręczny proces raportowania stał się niezrównoważony; dlatego 1 lutego 2020 r. przyjęliśmy półautomatyczną strategię żywego strumienia danych”. [1]
Słowo “niezrównoważony” sprawia, że brzmi to tak, jakby byli zasypywani przypadkami Covid. Rzeczywiste fakty to obalają. Według raportów WHO w tym dniu tylko 19 krajów zgłosiło przypadki[24]. Mogło to obejmować od 80 do 100 zgłoszeń pierwszego lutego. Nie jest wcale jasne, w jaki sposób tak niewielka liczba zgłoszeń została uznana za niezrównoważoną.
Artykuł w Lancet twierdzi, że ręczne aktualizacje zostały najpierw potwierdzone przez odpowiednie organy służby zdrowia. Z drugiej strony nic nie mówi się o tym, czy zautomatyzowane dane wejściowe zostały kiedykolwiek potwierdzone.
Co więcej, czy w ogóle możliwe jest zautomatyzowanie gromadzenia danych w wielu witrynach internetowych z rosnącej listy krajów, skoro każda witryna używa różnych formatów do wyświetlania swoich danych? Pytanie to jest szczególnie ważne, biorąc pod uwagę, jak często formaty te były zmieniane podczas Covid. Rzeczywiście, jak stwierdziła jedna z grup badawczych, jeszcze w maju 2021 r. nadal nie było “standardów” raportowania danych Covid[17]. Jak zatem poradził sobie mały zespół JHU, skoro sam ostatecznie przyznał się do wszystkich tych problemów? [16]
Bariery językowe
Dwie z trzech osób zaangażowanych w projektowanie pulpitu nawigacyjnego JHU pochodziło z Chin, a trzecia była Amerykaninem. Umożliwiłoby im to czytanie chińskich raportów publikowanych na stronie DXY. Jednak nie każdy kraj na świecie publikuje dane w języku chińskim lub angielskim. Trudności w wyodrębnianiu danych ze stron internetowych w językach obcych są znaczne, nawet przy użyciu zautomatyzowanych narzędzi tłumaczeniowych. Zautomatyzowanie tego globalnie jest prawie niewyobrażalne. Skrobanie Internetu jest prawie niemożliwe, gdy przeszukiwane strony są w języku nieznanym badaczowi. Wyzwania tego rodzaju są powszechnie doświadczane przez każdego, kto prowadzi globalne badania, w wyniku czego badacze często ograniczają się do krajów, które używają znanego im języka. Jak zatem poradził sobie zespół JHU?
Pierwszy na starcie
Pulpit nawigacyjny JHU był prawie zawsze pierwszą stroną internetową, która zgłosiła pierwszy przypadek Covid w danej lokalizacji. Gardner twierdzi, że:
“dashboard jest szczególnie skuteczny w wychwytywaniu czasu pierwszego zgłoszonego przypadku COVID-19 w nowych krajach lub regionach… Z wyjątkiem Australii, Hongkongu i Włoch, CSSE na Johns Hopkins University zgłosił nowo zainfekowane kraje przed WHO, z Hongkongiem i Włochami zgłoszonymi w ciągu kilku godzin od odpowiedniego raportu sytuacyjnego WHO”[1].
W przeciwieństwie do tego, co sugeruje to stwierdzenie, pulpity nawigacyjne nie rejestrują tego typu informacji, robią to ludzie. Jak to możliwe, że mały zespół JHU zareagował tak szybko, aby znaleźć pierwszy nowy przypadek w prawie każdym kraju, zanim zrobił to ktokolwiek inny? Czy to tylko zbieg okoliczności, że Gardner niedawno opracowała model, który wykorzystywał wzorce podróży lotniczych, aby dokładnie to przewidzieć? Pisząc o tym modelu, powiedziała: “model zapewnia oczekiwaną liczbę (100) importowanych przypadków przybywających na każde lotnisko na całym świecie”[25].
Czy ten model był tak dokładny, że pomógł JHU w znalezieniu każdego pierwszego nowego przypadku? Biorąc pod uwagę, jak niedokładny był ten model, taki scenariusz jest wysoce nieprawdopodobny: ten sam model przewidywał liczbę przypadków w Chinach, która była pięciokrotnie wyższa niż zgłaszana. Pomimo tego rażącego problemu z jej modelem, Gardner nadal uważała, że jest on dokładniejszy niż raporty oparte na faktach:
“Uważamy, że rzeczywista liczba przypadków 2019-nCoV w Chinach kontynentalnych jest prawdopodobnie znacznie wyższa niż ta zgłoszona do tej pory. W szczególności szacujemy, że do końca stycznia w Chinach kontynentalnych wystąpi około 58 000 skumulowanych przypadków 2019-nCoV (na dzień 31 stycznia zgłoszonych przypadków jest blisko 12 000)”.
Czy nie jest zatem możliwe, że Gardner uważała również, że jej przewidywania dotyczące tego, kiedy i gdzie powinny wystąpić pierwsze przypadki, były również dokładniejsze niż to, co zgłaszał jakikolwiek kraj? Czy JHU zgłaszał nowe przypadki na swojej tablicy rozdzielczej w oparciu o swoje modele? Czy dlatego powiedziała, że ” dashboard był szczególnie skuteczny w wychwytywaniu…”? Jeśli tak, to czy inne kraje i WHO uwierzyły w to, co zgłosiła JHU, a następnie same to zgłosiły?
Modelowanie komputerowe jako główne źródło danych
Jedyną odpowiedzią, która zapewnia racjonalne wyjaśnienie wszystkich zadanych do tej pory pytań, jest to, że tablica rozdzielcza JHU była oparta na symulacjach komputerowych, a nie na danych obserwacyjnych. Wydaje się również, że od czasu do czasu zespół JHU uzyskiwał dane empiryczne, które były następnie wykorzystywane do dostosowywania i “korygowania” danych wyjściowych z ich modeli[26, 27]. Powody, dla których jest to najbardziej prawdopodobna odpowiedź, są następujące:
Rządy nie są w stanie dostarczać danych w czasie rzeczywistym
Wyodrębnienie danych z witryn mediów informacyjnych w językach obcych jest zbyt trudne.
Wpisy na tablicy rozdzielczej zostały zautomatyzowane
Nie istniał skuteczny sposób na usunięcie duplikatów danych uzyskanych ze źródeł wiadomości.
Pulpit nawigacyjny był aktualizowany w krótkich odstępach czasu (15 minut lub co godzinę).
Źródła obejmują Worldometer, stronę specjalizującą się w symulacjach komputerowych.
Źródła obejmują również “bezpośrednią komunikację z dashboardem”, która mogła obejmować dane z symulacji komputerowej.
Nie wiadomo, czy zautomatyzowane wpisy zostały w jakikolwiek sposób potwierdzone.
Pulpit nawigacyjny został zaprojektowany w celu dostarczania danych organom służby zdrowia.
Władze zdrowotne ufały, że dane JHU są dokładne.
Repozytorium zawiera wiele zrzutów danych w celu ich “poprawienia”.
Pulpit nawigacyjny informował o pierwszych nowych przypadkach w danym kraju, zanim zrobił to ktokolwiek inny.
Dowody na wykorzystanie modelowania komputerowego
W dniu 4 marca 2024 r. wysłałem wiadomość e-mail do Lauren Gardner (głównej autorki projektu tablicy rozdzielczej JHU) z pytaniem, czy w którymkolwiek momencie wykorzystano modele komputerowe na potrzeby dashboardu i czy były to modele dostępne. Niestety do dnia dzisiejszego nie otrzymaliśmy żadnej odpowiedzi.
Ze względu na brak ustnego potwierdzenia i znalezienie jak dotąd jedynie poszlak, konieczne było dalsze poszukiwanie być może lepszych dowodów na to, czy JHU korzystał z modeli komputerowych w celu uzyskania danych. Nic dziwnego, że dowody istnieją. Na przykład 13 marca 2020 r. profesor Lauren Gardner przemawiała na przesłuchaniu kongresowym na Kapitolu, aby wyjaśnić działanie tablicy informacyjnej. Podczas prezentacji wyraźnie wspomniała o “wysiłkach modelowania, które podejmujemy za kulisami”[10].
Ponadto na stronie internetowej JHU czytamy:
“Gardner jest specjalistą w modelowaniu ryzyka chorób zakaźnych, w tym COVID-19…. Gardner kieruje wysiłkami w zakresie modelowania COVID-19 we współpracy z amerykańskimi miastami w celu opracowania niestandardowych modeli szacowania ryzyka COVID-19 na poziomie lokalnym”. [28]
Kiedy te dwa cytaty zostaną połączone z faktem, że Gardner była tak zajęta zarządzaniem pulpitem nawigacyjnym na początku 2020 r., że nie miała czasu na nic innego, jest pewne, że prace modelarskie dotyczyły pulpitu nawigacyjnego. Rzeczywiście, jak wskazano w jednym z artykułów, “pracując przez całą dobę przez 10 tygodni z rzędu, byli tak pochłonięci konserwacją pulpitu nawigacyjnego, że mieli niewiele czasu na analizę danych, które faktycznie pokazuje”[6].
Warto również zauważyć, że w 2019 roku Gardner opracowała “nowatorskie ramy modelowania matematycznego” do szacowania epidemii wirusa, model, który miał zostać “skalibrowany przy użyciu historycznych danych dotyczących epidemii”[29].
Co więcej, strona internetowa Centrum Nauki i Inżynierii Systemów JHU stwierdza, że modelowanie jest jednym z podstawowych filarów ich wydziału. Wydział CSSE definiuje się następującymi słowami: “Nauka o systemach to podejście do modelowania, które obejmuje dynamiczną interakcję komponentów inżynieryjnych, ludzkich i naturalnych w czasie i przestrzeni”[30].
Laboratorium Fizyki Stosowanej(APL) JHU, Od lewej:
Evan Bolt, Ryan Lau, Beatrice Garcia, Aaron Katz i Tim Ng przeglądają dane z pulpitu nawigacyjnego w APL’s LIVE Lab
Dlatego też, opierając się na fakcie, że Gardner jest ekspertem w modelowaniu chorób, jest przyzwyczajona do kalibracji modeli za pomocą danych empirycznych, była aktywnie zaangażowana w opracowywanie modeli dla Covid, udokumentowała, że jej modele są dokładniejsze niż oficjalnie zgłoszone liczby, a jej wydział uważa modelowanie za fundamentalne dla podejścia do każdego problemu, należy przyjąć za pewnik, że modele komputerowe były wykorzystywane jako podstawowe źródło danych. Innymi słowy, o ile nie istnieją mocne dowody przeciwne, pewne jest, że zespół JHU używał modeli komputerowych do generowania liczby przypadków i zgonów. Nie znaleziono jednak żadnych bezpośrednich dowodów.
W zgodzie z tymi odczuciami, ankieta przeprowadzona przez Jesse Pietza i in. wśród 25 różnych pulpitów nawigacyjnych Covid wyraźnie stwierdza, że pulpit nawigacyjny JHU wykorzystywał model epidemiologiczny SIRD (Susceptible, Infected, Recovered, Deceased) w 2020 r. do symulacji rozprzestrzeniania się Covid[31].
Wreszcie, w listopadzie 2020 r. opublikowano interesujący wątek na Twitterze, który dostarcza dowodów na to, że Ensheng Dong (student, który zbudował dashboard) przesyłał dane do repozytorium JHU z danymi utworzonymi za pomocą modelowania komputerowego[32]. (Chociaż żałujemy, że znaczenie tego wątku umknęło naszej uwadze przez tak długi czas, przyznajemy, że jego odkrycie stanowiło istotną część impulsu do badań, które doprowadziły do powstania tego artykułu).
W sierpniu 2022 r. Ensheng Dong i in. opublikowali przegląd swojego pulpitu nawigacyjnego, w którym omówiono niektóre wyciągnięte wnioski i wyzwania napotkane po drodze. Autorzy stwierdzili: “Zgodnie z naszym zobowiązaniem do udostępniania otwartych danych, dane wyświetlane na pulpicie nawigacyjnym pochodzą wyłącznie z publicznie dostępnych źródeł”[16]. A nieco dalej dodają: “tablica opierała się w całości na publicznie dostępnych danych”. Czy oznacza to, że tablica wykorzystywała wyłącznie dane empiryczne oparte na faktach? Niekoniecznie. Worldometer to “publicznie dostępne źródło”, które prawie na pewno opierało się na modelach komputerowych. Co więcej, niektóre rządy wykorzystały modele komputerowe do oszacowania, ile osób zachoruje lub umrze z powodu Covid. Dane wyjściowe z tych modeli były również publicznie dostępne. I nie jest nierozsądne sądzić, że niektóre organy służby zdrowia otrzymywały swoje liczby bezpośrednio z modeli JHU. Na uwagę zasługuje fakt, że nie twierdzą oni, że korzystali wyłącznie z danych empirycznych lub obserwacyjnych.
Rządowa nagroda za wynalazekLaura Asher, Evan Bolt, Beatrice Garcia, Tamara Goyea, Aaron Katz, Ryan Lau, Tim Ng, Sarah Prata, Jeremy Ratcliff i Miles Stewart za gromadzenie danych, korektę błędów i platformy modelowania dla pandemii COVID-19. Naukowcy z APL zapewnili możliwości gromadzenia i zarządzania danymi w Centrum Zasobów Koronawirusa Uniwersytetu Johnsa Hopkinsa, które zostało wyróżnione na liście "Najlepszych wynalazków 2020 roku" magazynu Time. Przy wsparciu adiunkt Lauren Gardner z Johns Hopkins Whiting School of Engineering, która stworzyła pulpit nawigacyjny, oraz we współpracy z kolegami z JHU Sheridan Library, APL stworzono zautomatyzowany system danych, który umożliwia dokładną i terminową analizę danych zdrowotnych.
Modele komputerowe zostały wykorzystane w wielu krajach do oszacowania przypadków Covid i zgonów [33, 34]. Niezależnie od tego, jak wadliwe były te modele (a były strasznie wadliwe[35]), zawsze rozumiano, że były to tylko modele[36]. Z drugiej strony pulpit nawigacyjny JHU twierdził, że dostarcza dane w czasie rzeczywistym dotyczące rzeczywistych przypadków Covid i zgonów. Dowody zdecydowanie sugerują inaczej.
Mylenie danych
Istnieje wiele problemów, które naturalnie pojawią się, jeśli szanowany dashboard będzie miał rzekomo udostępniać dane empiryczne odpowiednie do wykorzystania przez organy służby zdrowia, ale dane bazowe są w rzeczywistości generowane przez modele komputerowe. Problemy te będą występować nawet wtedy, gdy dane zostaną “potwierdzone” i zaktualizowane o dane z oficjalnych stron rządowych.
Kilka godnych uwagi problemów, które się pojawią to:
Niektóre kraje, wiedząc, że nie są w stanie uzyskać danych w czasie rzeczywistym, będą skłonne zaufać tablicy rozdzielczej i wykorzystać jej liczby do własnych celów. JHU następnie “potwierdza” swoje własne szacunki w stosunku do “oficjalnych” liczb. Ponieważ oficjalne liczby opierały się przede wszystkim na własnych szacunkach, błąd zostaje potwierdzony i ani dane JHU, ani oficjalne dane kraju nie są poprawne. W rezultacie liczby Covid w niektórych krajach będą tak samo błędne, jak modele komputerowe.
Inne kraje będą całkowicie polegać na własnych danych. Kiedy JHU “potwierdzi” swoje szacunki, dane JHU zostaną skorygowane. W tym scenariuszu dane będą tak poprawne, jak pozwalają na to testy i diagnostyka laboratoryjna lub jak pozwalają na to dane z tych krajów.
W wyniku powyższego dwa sąsiadujące kraje mogą mieć znacznie różne wskaźniki przypadków Covid i zgonów, nie dlatego, że Covid zachowywał się inaczej w obu krajach, ale dlatego, że jeden kraj zaakceptował dane JHU jako wiarygodne, a drugi nie. Ostatecznym rezultatem będzie to, że niemożliwe będzie porównanie statystyk Covid między krajami.
Ponieważ dane JHU zostały podzielone na miasta w niektórych regionach świata, niektóre miasta mogły zaakceptować dane JHU, podczas gdy inne nie. W rezultacie statystyki Covid mogą być oparte na danych empirycznych w jednym mieście i modelach w innym. Uniemożliwi to porównanie jednego miasta z jego sąsiadem.
W krajach, w których JHU dostarczyło dane na poziomie miasta, ponieważ niektóre miasta wykorzystały dane JHU jako własne, a inne nie, zagregowane wartości dla każdej prowincji lub stanu mogą być bez znaczenia.
Efekt netto polegający na tym, że niektóre regiony akceptują dane JHU, a inne nie, zarówno na poziomie miasta, stanu, jak i kraju, będzie oznaczał, że wszelkie algorytmy komputerowe stosowane w modelach JHU będą widoczne dla niektórych lokalizacji geograficznych, ale nie dla innych. W rezultacie w niektórych miejscach dane będą pasować do modelu SIRD, podczas gdy w innych nie. To sprawi, że badania epidemiologiczne będą beznadziejnie zagmatwane.
Wszystkie wyżej wymienione problemy były głównymi aspektami wielu dyskusji wokół Covid – nie tylko tych, w które sami się angażowaliśmy i o których pisaliśmy, ale także tych, o których czytaliśmy lub których jesteśmy świadomi. Na przykład, badając Włochy, odkryliśmy, że zgony z powodu Covid są zgodne z granicami regionalnymi, a nie z tym, czego można by się spodziewać po epidemii nowego wirusa[37]. Podczas badania Nowego Jorku odkryliśmy, że to, co podobno wydarzyło się w tym mieście, nie wydarzyło się w innych dużych miastach w USA[38]. Badając wzorce śmiertelności na całym świecie, odkryliśmy, że Covid “szanował” granice regionalne w nieoczekiwany sposób[39, 40]. Dlatego rzeczywiste problemy, które pojawiły się podczas badania danych Covid, są zgodne z rodzajem problemów, których można by się spodziewać, gdyby tablica rozdzielcza JHU była oparta na symulacjach komputerowych uzupełnionych danymi obserwacyjnymi.
Przykładem tego, jak poważna może stać się sytuacja, w której informacje są uważane za oparte na prawdziwych faktach, chociaż opierają się na modelu komputerowym, jest zniknięcie lotu MH370 w 2014 roku. Oprogramowanie używane przez Malaysia Airlines do śledzenia samolotów doprowadziło ich do przekonania, że zaginiony samolot znajdował się nad Kambodżą. Jednak później odkryto, że “śledzenie lotu” opiera się na [symulowanej komputerowo] projekcji i nie można na nim polegać przy rzeczywistym pozycjonowaniu lub wyszukiwaniu”[41]. Samolot nie znajdował się nigdzie w pobliżu Kambodży, a opóźnienie spowodowane tym nieporozumieniem wystarczyło, aby samolot został utracony[42].
Przykład: Nowy Jork
Wreszcie, kończymy dyskusję na temat pulpitu nawigacyjnego JHU, analizując Nowy Jork (NYC) jako studium przypadku, aby wizualnie zademonstrować niektóre z tych kwestii. Na pierwszym wykresie poniżej, dzienne zgony z powodu Covid są wykreślane przy użyciu danych uzyskanych z dwóch różnych źródeł: NYC Health (niebieska linia) i JHU dashboard (czerwona linia). Trzecia linia (zielona) jest po prostu wynikiem pomnożenia dziennych wartości JHU przez 4/3. Powód tej zielonej linii wyjaśniono poniżej. Wykres obejmuje wszystkie zgłoszone zgony z powodu Covid w Nowym Jorku do 17 maja 2020 r.
Rysunek 1: Codzienne zgony z powodu Covid w Nowym Jorku z dwóch różnych źródeł:NYC Health (niebieska linia) i JHU dashboard (czerwona linia).Oba źródła podają “dzień zgłoszenia”, a nie “dzień zgonu”.Dane zostały pobrane w marcu 2024 roku.
Zielona linia to dzienna wartość JHU pomnożona przez 4/3.
Powodem, dla którego 17 maja 2020 r. został wybrany jako data graniczna dla tego wykresu, jest fakt, że NYC Health (NYCH) zmienił kilka kluczowych aspektów swoich metod raportowania w tym dniu, powodując znaczne zakłócenia w trendach JHU. Należy również zauważyć, że dane wykorzystane na powyższym wykresie nie zostały wprowadzone do odpowiednich repozytoriów Github w przedstawionym dniu. Dane NYCH zostały po raz pierwszy wprowadzone do repozytorium 22 grudnia 2020 r., po czym były wielokrotnie korygowane w ciągu następnych trzech lat. Dane JHU były wprowadzane codziennie do 17 maja, a następnie ponownie korygowane 1 lipca, 31 sierpnia i 1 września. Poza tym, że we wrześniu. Jeden wpis przez JHU został dokonany w celu dystrybucji zgonów w Nowym Jorku według dzielnic, nie jesteśmy świadomi żadnych wyjaśnień dotyczących innych korekt[43].
Ogólnie rzecz biorąc, zarówno NYCH, jak i JHU uwzględniały to, co nazywały “prawdopodobnymi zgonami” w swoich dziennych liczbach. Ponieważ śledzili te kwoty osobno i codziennie, zdecydowaliśmy się uwzględnić je w dziennych wartościach NYCH (niebieska linia), ale nie w przypadku JHU (czerwona linia). W ten sposób różnica między niebieską i czerwoną linią na powyższym wykresie wynika z “prawdopodobnych zgonów”. [43]
Podobieństwa między niebieską i zieloną linią stanowią niemal niepodważalny dowód na to, że liczby “prawdopodobnych zgonów” zostały sztucznie wygenerowane na komputerze. Przy odrobinie wysiłku udało mi się znaleźć stosunkowo proste równanie, które sprawia, że dopasowanie między tymi dwiema liniami jest prawie idealne. Pozostawiamy jednak NYCH lub JHU podzielenie się wzorem, którego użyli do wygenerowania swoich “prawdopodobnych zgonów”.
Następnie wykreślamy dane dotyczące zgonów Covid (w tym “prawdopodobnych zgonów”) tylko z NYCH (ryc. 2 poniżej). Gładkość krzywej jest niezwykła i prawie na pewno odzwierciedla wykorzystanie modelu epidemiologicznego SIRD jako podstawowego źródła danych. Oczywiście, ponieważ krzywa JHU ma identyczny kształt (tylko z mniejszymi liczbami), ona również odzwierciedla model SIRD. Ponieważ ustaliliśmy już, że istnieje proste równanie dla “prawdopodobnych zgonów”, jest to dość przekonujący dowód na to, że modele zostały użyte dla wszystkich danych: potwierdzonych, prawdopodobnych i całkowitych.
Aby podkreślić ten ostatni punkt i dla celów porównawczych, następnie wykreślamy wykres zgonów z powodu Covid w prowincji Hubei w ciągu pierwszych trzech miesięcy 2020 r. (Rysunek 3 poniżej). Pomimo faktu, że populacja prowincji Hubei (58 milionów) jest siedmiokrotnie większa niż w Nowym Jorku (8,3 miliona), liczba zgonów w Hubei (szczyt: 147, suma: 3164) była znacznie mniejsza niż w Nowym Jorku (szczyt: 831, suma: 23 338). Aby te liczby były prawidłowe, oznaczałoby to, że to, co wydarzyło się w Nowym Jorku, było 51 razy gorsze niż to, co wydarzyło się w prowincji, z której rzekomo pochodzi Covid. Taki scenariusz jest tak nieprawdopodobny, że graniczy z niedorzecznością i potwierdza tezę, że dane z Nowego Jorku nie były oparte na zaobserwowanych faktach.
Rysunek 3: Zgony z powodu Covid w Wuhan w Chinach, według dnia zgłoszenia, od stycznia do marca 2020 r.Dwudniową średnią kroczącą zastosowano dla 12 i 13 lutego, 21 i 22 lutego oraz 23 i 24 lutego.Miało to na celu zachowanie obserwowalnego kształtu wykresu.Pierwotnie liczba zgłoszonych zgonów wynosiła zero w dniach 12, 21 i 23 lutego; a szczyt wynosił 242 w dniu 13 lutego.
Zauważono również, że wykres dla prowincji Hubei (rys. 3) jest bardziej zgodny z tym, jak zwykle wyglądają dane empiryczne (postrzępiony), podczas gdy wykres dla NYC (rys. 2) przypomina to, co wygenerowałby model komputerowy (gładki).
Wcześniej wykazaliśmy, że niemożliwe jest, aby 23 338 osób zmarło na Covid w Nowym Jorku wiosną 2020 roku[44]. Wykazaliśmy również, że dane dotyczące śmiertelności w Nowym Jorku są wątpliwe[38]. W oparciu o obecną dyskusję argumentujemy teraz, że najbardziej realnym wyjaśnieniem błędnych danych jest to, że algorytm komputerowy (oparty na modelu epidemiologicznym) został połączony z niewłaściwą pętlą sprzężenia zwrotnego między JHU i NYCH. Wszystko to sugeruje, i to raczej mocno, że liczby zgonów z powodu Covid dla Nowego Jorku zostały wymyślone na kalkulatorze, a nie policzone w kostnicy. Zachęcamy NYCH lub JHU do wyjaśnienia, dlaczego i w jaki sposób liczby te należy interpretować inaczej, oraz do przedstawienia aktów zgonu zmarłych jako dowodu.
Oczywiście, jeśli liczba zgonów z powodu Covid w Nowym Jorku była oparta na modelu komputerowym, wynika z tego, że mieszkańcy Nowego Jorku zostali poddani trzem miesiącom niepotrzebnego terroru na początku 2020 r., kiedy powiedziano im, że tysiące ich sąsiadów ginie z powodu Covid, podczas gdy nikt nie miał (lub jeszcze nie ma) pojęcia, ile osób faktycznie umiera. Jest zatem całkiem możliwe, że wiosną 2020 r. w Nowym Jorku nie wydarzyło się nic niezwykłego (podobnie jak nic niezwykłego nie wydarzyło się w Chinach[45]), a średni wzrost liczby połączeń 911 o 24%[46] w tym okresie, wraz z niewytłumaczalnym i niepokojącym wzrostem liczby zatrzymań akcji serca[47] nie był spowodowany Covid, ale strachem wywołanym przez media[48].
Wnioski
Pulpit nawigacyjny JHU został “opracowany w celu zapewnienia naukowcom, organom zdrowia publicznego i ogółowi społeczeństwa przyjaznego dla użytkownika narzędzia do śledzenia epidemii w miarę jej rozwoju”. Pomijając fakt, że śledzenie jakiejkolwiek choroby w czasie rzeczywistym jest funkcjonalnie niemożliwe i niezależnie od tego, że nic szczególnego się nie “rozwijało”, gdy ją opracowywano, wszystkie dowody wskazują na to, że udało im się stworzyć pulpit nawigacyjny Covid za pomocą modeli komputerowych, które od czasu do czasu były “korygowane” danymi uzyskanymi z oficjalnych rządowych stron internetowych. Mieszając dane z modeli komputerowych z danymi z obserwacji, jednocześnie twierdząc, że “w całości polegali na publicznie dostępnych danych”, pomylili dane tak bardzo, że stały się one bez znaczenia. W rezultacie baza danych JHU Covid jest i była tak niewiarygodna, że nigdy nie powinna być używana do określania przypadków Covid lub zgonów.
Jakkolwiek zaskakująco może brzmieć ten wniosek, jest to w zasadzie to, co Aaron Katz (przełożony w zespole programistów JHU) powiedział cztery lata temu:
“Za dziesięć lat zobaczymy wszystkie raporty i retrospektywy, które powiedzą nam dokładnie, co się stało i gdzie….[Ale na razie] staramy się rozwiązać ten problem świadomości sytuacyjnej w chwili obecnej”[11].
Przynajmniej jego słowa informują nas, że uzyskanie dokładnych danych na temat konkretnej choroby zajmuje zwykle dziesięć lat. W najgorszym przypadku cytat ten zapewnia nas, że tablica rozdzielcza JHU była niewiarygodna, że zaufanie pokładane w danych było całkowicie błędne, a tablica rozdzielcza JHU spowodowała wiele błędnych wniosków na temat Covid.
W świetle tych wszystkich faktów i obserwacji:
Wzywamy rządy i urzędy statystyczne na całym świecie do powrotu do dawnego powolnego, ale dokładnego procesu gromadzenia wiarygodnych danych za pośrednictwem normalnych kanałów,
Zachęcamy badaczy medycznych, aby oparli się pokusie korzystania z danych Covid z repozytorium JHU i zamiast tego poczekali, aż wiarygodne dane staną się dostępne,
Zwracamy się do Uniwersytetu Johna Hopkinsa o pełną otwartość i przejrzystość w zakresie kodu komputerowego, modeli, źródeł i procedur wykorzystywanych w ich pulpicie nawigacyjnym,
Wzywamy Nowy Jork do rozpoczęcia przejrzystego dochodzenia w sprawie tego, czy i w jaki sposób ich dane zostały zniekształcone przez modele komputerowe,
Wzywamy opinię publiczną do bardziej krytycznego podejścia do wszelkich twierdzeń dotyczących globalnych statystyk choroby “w czasie rzeczywistym”.
autor:
Thomas Verduyn
Autor jest wdzięczny za nieocenioną pomoc udzieloną przez współpracowników i autorów tego artykułu, którzy pragną pozostać bezimienni.
Thomas Verduyn, BASc – uzyskał tytuł licencjata z wyróżnieniem w dziedzinie inżynierii lotniczej i kosmicznej. Ma szeroki zakres doświadczeń zawodowych, w tym doradztwo komputerowe, budownictwo, transport, księgowość i przedsiębiorczość. Jest zapalonym czytelnikiem wielu różnych dziedzin. Opublikował wiele książek, jest żywo zainteresowany zdrowiem i pasjonuje się poznawaniem Boga.
Hej jestem Dariusz Galczak współtwórca AlterShot. Od marca 2020 wyszukuję i tłumaczę teksty o zachodzących wokół nas przemianach, także o “wiadomej sprawie”, by dać szerszą perspektywę tam gdzie jej brakuje. Od lipca 2020, tworzę też filmy i relację głównie z konferencji. Mimo, że jak wielu “nowa sytuacja” postawiła mnie w nowej roli, to staram się współpracować z profesjonalistami i stale rozwijać umiejętności i warsztat.
Ponieważ temat jest obszerny przygotowałem dwie wersję treści, krótszą opracowaną przez profesora Martina Neila, która jest poniżej, oraz dłuższa – czyli tłumaczenie materiału źródłowego opracowanego przez Thomasa Verduyna, do której można przeskoczyć za pomocą poniższego klawisza nawigacji.
“Fałszywe liczby”, które wywołały reakcję świata naCovid-19
Thomas Verduyn poinformował właśnie o serii zdumiewających rewelacji na temat pulpitu nawigacyjnego danych dotyczących przypadków i śmiertelności, “przyjaznego dla użytkownika narzędzia do śledzenia epidemii w miarę jej rozwoju”, wprowadzonego przez Johns Hopkins University (JHU) w Baltimore na początku pandemii Covid-19.
W artykule wspartym szczegółowymi badaniami dla PANDA, niezależnej grupy badawczej zajmującej się reagowaniem na Covid-19, donosi, że JHU stworzył i uruchomił swój internetowy “pulpit informacyjny” w czasie, gdy choroba nie została nawet nazwana, kiedy poza Chinami odnotowano tylko cztery przypadki – i żadnych zgonów. Chociaż został stworzony “pod wpływem chwili” i “zajęło to tylko kilka godzin”, szybko stał się najważniejszym globalnym źródłem danych dotyczących Covid-19, wykorzystywanym przez media, badaczy medycznych, władze zdrowotne i opinię publiczną. A wszystko to przy skromnym budżecie i z wykorzystaniem zasobów studenckich w niepełnym wymiarze godzin.
Warto zauważyć, że zaledwie trzy miesiące wcześniej, w październiku 2019 r., JHU był gospodarzem niesławnego już Event 201, ćwiczeń szkoleniowych opartych na fikcyjnym scenariuszu pandemii, zorganizowanych przez Światowe Forum Ekonomiczne oraz Fundację Billa i Melindy Gatesów, z udziałem epidemiologa JHU, profesora Thomasa Ingelsby’ego.
22 stycznia 2020 r. ta sama instytucja wdrażała jedno z najbardziej wpływowych repozytoriów danych na świecie w związku z pandemią, która nie została jeszcze wtedy ogłoszona.
Verduyn donosi, że pulpit nawigacyjny był w stanie szybko agregować statystyki zgonów i przypadków z praktycznie każdego organu zdrowia publicznego na świecie, a także z Twittera i internetowych serwisów informacyjnych, w tym dane z nieoficjalnych źródeł i niejasnych stron internetowych w Chinach.
Osiągnięcie to stoi w ostrym kontraście z niedawną niezdolnością urzędników do zgłaszania dokładnych statystyk dotyczących nadmiernej śmiertelności – mogli dokładnie śledzić śmiertelność w 2020 roku, ale najwyraźniej stracili tę zdolność od tego czasu.
W jaki sposób trzej twórcy JHU dokonali tego wyczynu? Verduyn podnosi możliwość, że dane, które przesłali do pulpitu nawigacyjnego, były częściowo oparte na modelach epidemiologicznych, a nie na rzeczywistych przypadkach lub zgonach. Innymi słowy, wykorzystali oni oczekiwane zgony i przypadki jako surogaty rzeczywistych zgonów (których nie mieli możliwości dokładnie poznać). Główna autorka pulpitu nawigacyjnego JHU, profesor Lauren Gardner, jest specjalistką w dziedzinie matematycznego modelowania chorób zakaźnych, a w 2019 r. opracowała nowatorskie ramy modelowania matematycznego do szacowania epidemii wirusa, model, który miał zostać skalibrowany przy użyciu historycznych danych dotyczących epidemii.
Czy zatem symulacja komputerowa mogła zostać wykorzystana do oszacowania skali pandemii, a dane obserwacyjne wykorzystane do dostosowania i “skorygowania” modelowanych wyników? Jeśli tak, to na ile wiarygodne byłyby dane na pulpicie nawigacyjnym JHU i w oficjalnych statystykach?
Verduyn twierdzi, że wiele krajów nie byłoby w stanie uzyskać własnych danych w czasie rzeczywistym i dlatego polegałoby na tablicy rozdzielczej JHU jako autorytatywnym źródle, zastępując w ten sposób własne dane empiryczne danymi modelowymi. Dane te następnie trafiłyby z powrotem do krajowych oficjalnych repozytoriów danych Covid-19, aby w przyszłości zostały wykorzystane przez JHU w ich bieżących wysiłkach modelowania, tworząc w ten sposób błędne koło sfabrykowanych danych wzmacniających narrację o pandemii.
Ilustruje to błędne koło, wykorzystując dane dotyczące śmiertelności z Nowego Jorku (NYC). Porównując gwałtowny wzrost śmiertelności w Nowym Jorku wiosną 2020 r. z danymi JHU, ustalił on, że z tygodnia na tydzień było znacznie więcej zgonów z powodu Covid-19 wymienionych w oficjalnych statystykach śmiertelności w Nowym Jorku niż w tych opublikowanych przez JHU, i że różnica ta utrzymywała się przez cały okres szczytu pandemii Covid-19 wiosną 2020 roku. Ta znacząca różnica nigdy nie została omówiona ani wyjaśniona ani przez JHU, ani przez władze Nowego Jorku. Fakt, że są one stale niezsynchronizowane, jest wystarczającym sygnałem. Verduyn twierdzi, że różnica ta stanowi niezbity dowód na to, że liczby “prawdopodobnych zgonów” zostały sztucznie wygenerowane na komputerze, przy użyciu modelu epidemiologicznego podobnego do tego zastosowanego przez Neila Fergusona w jego niesławnym i rażąco niedokładnym modelu przewidywania zgonów z powodu Covid-19 w Wielkiej Brytanii i innych krajach.
Śledzenie jakiejkolwiek choroby w czasie rzeczywistym było i pozostaje niemożliwe. Biorąc to pod uwagę oraz fakt, że w czasie jego tworzenia nie działo się nic szczególnie niepokojącego, analiza Verduyna sugeruje, że JHU udało się stworzyć pulpit informacyjny Covid-19 w celu przekazania wrażenia pandemii lub wyolbrzymienia tego, co w przeciwnym razie, biorąc pod uwagę obciążenie śmiertelnością, byłoby postrzegane jako rutynowy sezon grypowy. Warto zauważyć, że wdrożenie pulpitu informacyjnego spełniło również jeden z celów Event-u 201 – symulację pandemii tak realistycznej, że była całkowicie wiarygodna.
Kraje europejskie stoją w obliczu KATASTROFICZNYCH konsekwencji po #Covid#Vaccine zastrzykach – poseł do Parlamentu Europejskiego i były sędzia @mislavkolakusic
wyjaśnia przerażające statystyki :
„Wysoce zaszczepione kraje w Europie doświadczają drastycznego wzrostu NADMIERNEJ ŚMIERTELNOŚCI:
explains the horrifying statistics : “Highly vaccinated countries in Europe are experiencing drastic increases in EXCESS MORTALITY : Croatia 14.6% Italy 24.9% Portugal 28.8% Greece 31.2% Spain 36.9% Iceland 55.8% The least vaccinated countries in Europe have the LOWEST excess mortality : Romania 2.4% Bulgaria 1.4%” The DATA that’s presented is CLEAR, the higher the Covid Vaccination rate, the higher the deaths – It’s UNDENIABLE at this point
Artykuł przeglądowy opublikowany w zeszłym tygodniu w czasopiśmie Phytotherapy Research definitywnie pokazuje, że kurkumina jest rzeczywiście potencjalnie (i w większości udowodniona) bardzo skutecznym środkiem terapeutycznym w leczeniu zarówno Covid-19, jak i choroby prionowej. [To rzadka, ale często nią w mediach grożono, choroba neurologiczna. Najczęściej to Creutzfeldta i Jakoba. Więcej o niej: choroby-zakazne/choroby-wywolane-przez-priony md]
Osobiście postrzegam witaminę D i kurkuminę jako dwa suplementy na „bezludną wyspę”, które zdecydowanie wybrałbym. [to Autor, nie MD. Ja się na żadne wyspy nie wybieram]
Kurkumina była stosowana od wieków w medycynie tradycyjnej i stała się przedmiotem wielu (bardzo obiecujących) badań w ciągu ostatnich 20 lat.
Kurkumina, aktywny składnik kurkumy (Curcuma Soma, rodzina: Zingiberaceae), która pochodzi z subkontynentu indyjskiego i Azji Południowo-Wschodniej, jest od wieków szeroko stosowana w medycynie tradycyjnej. Kurkumina była szeroko badana w ciągu ostatnich dwudziestu lat, co wykazało jej liczne właściwości lecznicze w leczeniu różnych schorzeń. Właściwości te, wraz z pokrewną rodziną kurkuminoidów, obejmują działanie przeciwdrobnoustrojowe, przeciwnaczyniowe (substancje działające na naczynia krwionośne nowotworów), przeciwzapalne, przeciwnowotworowe i [wycinam szczegóły naukowo-medyczne, są w oryginale MD]
Patrząc na Covid-19, kurkumina wydaje się być niemal dostosowana do leczenia tej choroby. Od hamowania ekspresji cytokin zapalnych i celowania w białko szczytowe po całkowite wyeliminowanie SARS-CoV-2 z hodowli komórkowych, kurkumina oferuje mnóstwo właściwości leczniczych. Co więcej, jest to środek całkowicie bezpieczny i skuteczny, a praktycznie nie ma znanej toksyczności.
W wielu niedawnych badaniach opublikowanych w literaturze zbadano wpływ kurkuminy na SARS-CoV-2. Metodą in vitro wykazano, że kurkumina hamuje SARS-CoV-2.
================================
[dalej – to, co w italiku, można opuścić – naukawe. MD]
=======================================
Dowody wykazały hamowanie różnych szlaków, w tym NF-KB/MAPK, produkcji cytokin, a także stresu oksydacyjnego. Kurkumina atakuje wiele białek, co rzuca światło na hamujące właściwości kurkuminy. Na przykład wirusowe białko kolców (szczególnie domena RBD) i białko błony wirusa, a także zależna od RNA polimeraza RNA (która jest kluczową częścią mechanizmu replikacji i transkrypcji wirusa) zostały zablokowane i zahamowane przez kurkuminę i jej różne składniki. Niektóre badania wykazały, że kurkumina/kurkuminoidy mają działanie hamujące przeciwko odmianom wirusa Alpha, Beta, Gamma, Delta, Kappa Mu i omicron. Według niektórych doniesień kurkumina była w stanie całkowicie wyeliminować SARS-CoV-2 z hodowli komórkowych i zmniejszyć obciążenie wirusowym RNA maksymalnie o 87,8%. Poza tym kurkumina znacząco obniża poziom białka C reaktywnego. Niektóre badania przyczyniły się do dalszego rozwoju pochodnych kurkuminy w celu poprawy ich dostarczania i skuteczności. Na przykład preparaty naśladujące aspirynę i kurkuminę, nanokurkumina i sylimaryna + kurkumina wykazały silniejsze działanie przeciwwirusowe. Badania in vivo to kolejny obiecujący kierunek badań.
==================================
Badania in vivo wykazały kilka korzyści:
1. Kurkumina łagodzi objawy choroby, takie jak kaszel, stany zapalne, ból i zaburzenia węchu i smaku;
2. Kurkumina może znacznie skrócić czas rekonwalescencji u pacjentów z łagodną do umiarkowanej chorobą COVID-19;
3. Kurkumina moduluje układ odpornościowy;
4. Burza cytokin ustąpi po zastosowaniu suplementów kurkuminy;
5. Średnia ilość przeciwciał powstałych w grupach leczonych suplementacją kurkuminą wykazała statystycznie istotny wzrost w porównaniu z grupą kontrolną.
Nieco lepsze wyniki osiąga się w przypadku nanokoniugatów kurkuminy. Nano-kurkumina może znacząco zwiększyć częstotliwość występowania komórek Treg, poziom ekspresji FoxP3, IL-10, IL-35 i TGF-b (wszystkie te czynniki pomogłyby w stłumieniu stanu zapalnego) zarówno w łagodnej, jak i ciężkiej postaci Covid-19
Przełomowy wyrok WSA w Wa-wie! Sąd uznał, że NOP po szczepieniu na c19 może powstać po szczepieniu w sposób bezpośredni, ale też pośredni. Sąd wskazał, że okres od szprycy do NOP jest określony przesłanką 5 letniego okresu z art.17a ust 1 ustawy o zapobieganiu i zwalczaniu zakażeń i chorób zakaźnych.
Przed pojawieniem się Covid-19 firma BioNTech, niemiecki twórca i właściciel tak zwanej szczepionki „Pfizer”, prowadziła wyłącznie badania nad terapiami przeciwnowotworowymi. Firma skupiała się na tym, a nie na chorobach zakaźnych. Ale żadna z tych prób nie zaszła zbyt daleko. Żaden z eksperymentalnych leków przeciwnowotworowych BioNTech nie trafił nigdy do zakrojonego na szeroką skalę badania klinicznego fazy 3, a jedno z zaledwie trzech badań fazy 2 zarejestrowanych przez BioNTech przed 2020 rokiem zostało „przedwcześnie zakończone” z nieznanych powodów.
W sumie firma BioNTech przetestowała swoje leki jedynie na nieco ponad 400 – w większości skrajnie chorych – pacjentach chorych na raka.
W świetle doniesień o rosnącej liczbie diagnoz nowotworów od czasu wprowadzenia szczepionek przeciw Covidowi opartych na mRNA, w niedawnym artykule zastanawiałem się, czy badania BioNTech zakończyły się niepowodzeniem, ponieważ oferowane przez nią terapie przeciwnowotworowe oparte na mRNA w rzeczywistości sprzyjały wzrostowi nowotworu, a nie hamowały go lub odwracały.
Cóż, teraz mamy dalsze potwierdzenie tej hipotezy.
Nowy przeddruk autorstwa Rubio-Casillas i in. w International Journal of Biological Macromolecules zadaje pytanie „N1-metylo-pseudourydyna (m1Ψ): przyjaciel czy wróg raka?” Zastąpienie naturalnie występującej urydyny N1-metylo-pseudourydyną jest właśnie innowacją leżącą u podstaw platformy mRNA firmy BioNTech, która w ten sposób w rzeczywistości staje się platforma modRNA lub zmodyfikowanego RNA. Katalin Karikó, która później została wiceprezesem BioNTech, podzieliła się Nagrodą Nobla w dziedzinie medycyny z Drew Weissmanem za odkrycie tej innowacji.
N1-metylopseudourydyna: przyjaciel czy wróg raka? Odpowiedź autorów jest jasna: przyjaciel… raka. Zatem streszczenie brzmi (podkreślenie dodane):
Ponadto odkryto, że szczepionki mRNA hamują podstawowe szlaki immunologiczne, upośledzając w ten sposób wczesną sygnalizację interferonu. … Dostarczono dowody na to, że dodanie 100% N1-metylopseudourydyny (m1Ψ) do szczepionki mRNA w modelu czerniaka stymulowało wzrost nowotworu i przerzuty, podczas gdy niezmodyfikowane szczepionki mRNA dawały odwrotne wyniki, co sugeruje, że szczepionki mRNA przeciwko Covid-19 mogą wspomagać rozwój raka.
Czy BioNTech i organ regulacyjny wiedzieli już, co od Rubio-Casillas i in. dowiedziałem się? To znaczy: czy wiedzieli, że platforma mRNA firmy może być onkogenna, zanim została udostępniona dosłownie miliardom ludzi na całym świecie jako podstawa szczepionki przeciwko Covid-19?
Właściwym organem regulacyjnym w przypadku dwóch badań, w tym tego, które zostało „przedwcześnie zakończone”, był nikt inny jak PEI: niemiecki organ regulacyjny ds. szczepionek i leków, o którego bliskich stosunkach z BioNTech pisałem tutaj. [odnośniki w oryginale. MD]
(Właściwym organem w przypadku trzeciego badania był niemiecki Federalny Instytut Leków i Wyrobów Medycznych (BfArM), siostrzana organizacja PEI.)
Zbiórka W obronie szykanowanego lekarza Agata OsiniakORGANIZATOR ZBIÓRKI
Szanowni Państwo! Jestem lekarzem pediatrą i specjalistą medycyny rodzinnej z ponad 30 letnim stażem pracy.W mojej pracy z chorymi ludźmi zawsze przyświecają mi dwie zasady:po pierwsze nie szkodzić i ,że zdrowie chorego jest najwyższym dobrem. Kiedy w 2020 roku ogłoszono tzw.pandemię covid-19 szybko zorientowałam się, że szeroko rozpowszechniane zalecenia i nakazy noszenia maseczek, izolacji, lockdownów, zamykania przychodni przed pacjentami itp. – są kłamliwe i nie poparte żadnymi badaniami naukowymi.
Po raz pierwszy w historii ludzkości lekarze zamknęli się przed chorymi ludźmi!
Wiedząc to wszystko nie mogłam zachować tej wiedzy tylko dla siebie -chciałam podzielić się nią ze społeczeństwem.Takich lekarzy myślących podobnie jak ja było w Polsce kilkuset. Jesienią 2020 roku grupa 114 profesorów,lekarzy i naukowców ( w których gronie znalazłam się również ja) wystosowała list otwarty i trzy apele do rządzących, pisząc w nich między innymi,że nie ma naukowego i medycznego uzasadnienia dla kontynuacji stosowanych obostrzeń, noszenia maseczek ochronnych, izolacji społecznej oraz masowego stosowania niediagnostycznych testów RT-PCR, które dają wiele fałszywie dodatnich wyników. Te trzy apele wzywały do natychmiastowego zakończenia tych działań oraz przywrócenia normalnych, demokratycznych zasad funkcjonowania państwa, struktur prawnych, swobód obywatelskich oraz przestrzegania praw człowieka. Grupa ta poparła swoje zamieszczone w liście i apelach tezy, cytując liczne doniesienia naukowe oraz dane epidemiologiczne i statystyczne, oczekując jednocześnie otwartej debaty, w której wezmą udział eksperci bez jakiejkolwiek formy cenzury.
W swoich apelach środowisko naukowców i lekarzy,jakie reprezentowały osoby podpisane pod nimi, wyraziło również swoje zaniepokojenie faktem planowanych szczepień preparatami inżynierii genetycznej zawierającymi mRNA, nie będącymi tradycyjnymi szczepionkami i nigdy dotychczas nie stosowanymi u ludzi. Nie zostały one dostatecznie zbadane więc są potencjalnie niebezpieczne, a ich skuteczność nie jest w pełni udowodniona. Noszą znamiona eksperymentu medycznego prowadzonego na masową skalę. Apele te nie doczekały się żadnego odzewu od prezydenta, premiera, rządu czy parlamentu, ani też nie zorganizowano publicznej debaty niezależnych ekspertów.
Jedyną natomiast odpowiedzią jakiej się doczekało kilkudziesięciu profesorów i lekarzy-sygnatariuszy tych apeli, było wszczęcie postępowania wyjaśniającego przez Naczelnego Rzecznika Odpowiedzialności Zawodowej Naczelnej Izby Lekarskiej lekarza Grzegorza Wronę już w styczniu 2021 roku. Obecnie toczą się sprawy o ukaranie 114 profesorów i lekarzy w Okręgowych Sądach Lekarskich we Wrocławiu, Poznaniu i Gdańsku, a zarzutem wobec nas jest publiczne rozpowszechnianie informacji niezgodnych z aktualna wiedzą medyczną i propagowanie postawy antyzdrowotnej oraz działań na szkodę pacjentów i całego społeczeństwa. Kiedy latem 2021 roku rozpętała się nachalna propaganda w mediach i placówkach oświatowych zachęcająca rodziców do szczepienia swoich dzieci bezpiecznymi,skutecznymi i dobrze przebadanymi “szczepionkami” przeciwko covid-19 znów, znając badania naukowe i oficjalne dane statystyczne i epidemiologiczne, nie potrafiłam milczeć, wiedząc,że te preparaty mRNA nie są wcale bezpieczne, nieznana jest ich skuteczność i wcale nie są dobrze przebadane( o czym oficjalnie producenci sami piszą w ulotkach tych preparatów, zaznaczając,że ich genotoksyczność, wpływ na płodność i rakotwórczość oraz interakcje z jakimikolwiek lekami są nieznane).
Wówczas,w lipcu 2021 roku, udzieliłam wywiadu na prośbę zaniepokojonych rodziców, którzy byli zdezorientowani napływającymi do nich informacjami i przedstawiłam w nim między innymi apel Polskiego Stowarzyszenia Niezależnych Lekarzy i Naukowców do dyrektorów placówek oświatowych, nauczycieli i pedagogów o wstrzymanie promowania tzw. szczepionek przeciwko covid-19, poparty wieloma badaniami naukowymi oraz oficjalnymi danymi statystycznymi i epidemiologicznymi,potwierdzającymi nieskuteczność, brak bezpieczeństwa i brak ukończenia badań klinicznych tych preparatów mRNA-covid-19, które nigdy wcześniej nie były podawane tak szerokiej populacji. Moje poczucie etyki zawodowej nakazuje mi informowanie pacjenta przed podjęciem jakiejkolwiek interwencji medycznej o wszystkich za i przeciw i uzyskanie jego świadomej zgody na taki zabieg, a zwłaszcza taki ,który wiąże się z ryzykiem i wieloma niewiadomymi.Pacjent musi mieć wybór,o tym też mówiłam w tym wywiadzie.Już we wrześniu 2021 roku Okręgowy Rzecznik Odpowiedzialności Zawodowej w Rzeszowie,lekarz Grzegorz Siteń,wszczął wobec mnie postępowanie wyjaśniające i skierował sprawę do Okręgowego Sądu Lekarskiego w Rzeszowie o ukaranie mnie,zarzucając mi,podobnie jak w poprzedniej sprawie,publiczne rozpowszechnianie informacji niezgodnych z aktualną wiedzą medyczną i propagowanie postawy antyzdrowotnej oraz działań na szkodę pacjentów i całego społeczeństwa.Dnia 29 listopada 2022 roku zostałam ukarana przez Okręgowy Sąd Lekarski pod przewodnictwem dr n.med Zenona Piechoty karą nagany i kosztami postępowania sądowego w wysokości 1500 zł.W żadnym wypadku nie czuję się winna ponieważ stoją za mną dziesiątki badań naukowych i oficjalnych rządowych danych statystycznych z całego świata,które przedstawiłam sądowi na obronę moich tez,w przeciwieństwie do sądu,który na poparcie swojego aktu oskarżenia wobec mnie nie przedstawił ani jednego badania naukowego ani tez opinii biegłego dotyczącej tego przewinienia zawodowego! Wobec tego złożyłam odwołanie do Naczelnego Sądu Lekarskiego w Warszawie -sprawa ta obecnie również jest w toku. Wszystkie działania jakie podejmowałam i za które jestem szykanowana przez izby lekarskie i grozi mi utrata prawa wykonywania zawodu lekarza, robiłam dla dobra pacjentów,chcąc ustrzec ich przed podejmowaniem pochopnych i nie do końca przemyślanych decyzji w sprawie “szczepień” przeciwko covid-19,które jak już wiadomo obecnie, nie chroniły przed śmiercią ani hospitalizacją z powodu covid-19,nie przerywały transmisji wirusa i spowodowały wiele śmierci i wiele działań niepożądanych u tych, którzy przyjęli te preparaty.Wiedzę naukową ,którą posiadłam na ten temat nie zostawiłam dla siebie, tylko podzieliłam się z Wami. Dlatego zwracam się do Was z prośbą -jeżeli komukolwiek moja wiedza pomogła w podjęciu świadomej decyzji w “sprawie niezaszczepienia się” lub swojego dziecka przeciwko covid-19 o wsparcie finansowe, które jest potrzebne na pomoc prawników w mojej walce o prawdę.
W lutym 2021 r. przewodnicząca Komisji Europejskiej Ursula von der Leyen wymieniła dziesiątki tajnych wiadomości tekstowych z dyrektorem generalnym Pfizera Albertem Bourlą, w których najwyraźniej omawiali szczegóły ostatecznego zakupu przez Komisję Europejską 1,8 miliarda dawek nieskutecznej i niebezpiecznej terapii genowej Pfizer-BioNtech w celu zaszczepienia jej mieszkańcom Europy. Warunki ich umowy – w tym to, ile Komisja Europejska zapłaciła za dawki – nigdy nie zostały ujawnione opinii publicznej, która została nakłoniona i zastraszona do ich otrzymania.
Podczas gdy New York Times nigdy nie pisał o nieskuteczności szczepionki i słabym profilu bezpieczeństwa, gazeta uznała jednak, że ogromna, tajna transakcja ma wystarczający interes publiczny, aby uzasadnić pozwanie Komisji Europejskiej o ujawnienie wiadomości tekstowych. Sprawa toczy się przed sądem europejskim i wydaje się, że wyrok sądu zostanie prawdopodobnie opóźniony do czasu po czerwcowych wyborach do UE (von der Leyen ubiega się o drugą kadencję).
Komisja Europejska twierdzi, że “Ursula von der Leyen nie jest już w posiadaniu wiadomości tekstowych”. Politico złożyło wniosek o dostęp do dokumentów, na który Komisja odpowiedziała:
Żadne wiadomości tekstowe nie zostały zarejestrowane w systemie rejestracji dokumentów Komisji. Biorąc pod uwagę, że wiadomości “zostałyby zarejestrowane, gdyby zawierały ważne informacje, które nie są krótkotrwałe”, oznacza to, że wiadomości tekstowe, jeśli kiedykolwiek istniały, musiały nie być bardzo ważne. A gdyby nie były ważne, to nie musiałyby być w ogóle rejestrowane.
Oznacza to, że około 100 SMS-ów wymienionych między Bourlą i von der Leyen nie zawierało żadnych ważnych informacji. To rodzi pytanie: Co mężczyzna i kobieta mówili sobie w swoich wiadomościach tekstowych? Czy łączyli interesy z przyjemnością?
Bourla publicznie oświadczył, że spośród wielu urzędników państwowych, z którymi rozmawiał o zakupie swoich śmieci, szczególnie łatwo rozmawiało mu się z Ursulą von der Leyen, która jest również lekarzem medycyny (ginekologiem). Jak donosi New York Times:
Pan Bourla powiedział, że on i pani von der Leyen “nawiązali wzajemne głębokie zaufanie, ponieważ wdali się w głębokie dyskusje”. Powiedział: “Znała szczegóły dotyczące wariantów, znała szczegóły dotyczące wszystkiego. To sprawiło, że dyskusja była o wiele bardziej zaangażowana”.
Jeśli rozwinęła się między nimi osobista więź sympatii i uczucia, rodzi to możliwość konfliktu interesów.
Wydaje mi się, że cała ta podejrzana i brudna sprawa jest przykładem na to, że Komisja Europejska stała się korytem dla specjalnych interesów, jednocześnie traktując obywateli Europy z pogardą.
Aby zagłębić się w tę sprawę, przeprowadziłem niedawno wywiad z francuską prawniczką, Diane Protat. Reprezentuje ona belgijskiego lobbystę Frédérica Baldana, który złożył w Belgii skargę karną przeciwko von der Leyen, obejmującą zarzuty korupcji i niszczenia dokumentów.
Pani Protat reprezentuje również francuską organizację BonSens, która ciężko pracuje na rzecz prawdy i sprawiedliwości przeciwko przestępczej reakcji na pandemię we Francji.
Współpracując z amerykańskim prokuratorem Williamem Snyderem, podejmuje działania prawne w sądzie federalnym Stanów Zjednoczonych na podstawie sekcji 1782 tytułu 28 Kodeksu Stanów Zjednoczonych w celu uzyskania wiadomości tekstowych.
Sekcja 1782 upoważnia amerykańskie federalne sądy okręgowe (tj. federalne sądy procesowe) do nakazania osobie lub podmiotowi, który “zamieszkuje” w obrębie jurysdykcji sądu, “złożenia zeznań lub oświadczenia albo przedstawienia dokumentu lub innej rzeczy do wykorzystania w postępowaniu przed sądem zagranicznym lub międzynarodowym”. Ponieważ dyrektor generalny Pfizer Albert Bourla mieszka w Nowym Jorku, prawo to zdecydowanie ma zastosowanie do jego komunikacji z przewodniczącym Komisji Europejskiej.
[Pani Protat i ja podjęliśmy spontaniczną decyzję o przeprowadzeniu naszego wywiadu na Zoomie zaraz po tym, jak oboje obejrzeliśmy zaćmienie słońca w Ameryce Północnej 8 kwietnia. Rozmowę przeprowadziła w domu przyjaciółki i nie miała czasu, by wrócić do hotelu i przebrać się przed rozmową, stąd jej swobodny strój “zaćmieniowy”.] W tym wywiadzie francuska prawniczka zwraca uwagę, że sąd amerykański podejmie działania dopiero po stwierdzeniu takiej potrzeby przez sąd unijny. W USA taka komunikacja może potrwać nawet 5 lat.
W tym badaniu badano skutki niepożądane zgłaszane po zastrzyku indywidualnym, podobne do objawów obserwowanych w przypadku ostrych następstw COVID (PASC) lub długiego przebiegu choroby Covid-19.
W badaniu skupiono się na tym, czy białko S1 dostarczane przez szczepionki przeciwko COVID-19 w celu wywołania odpowiedzi immunologicznej utrzymuje się w komórkach odpornościowych i przyczynia się do długotrwałych objawów. Porównano pięćdziesiąt osób, u których objawy wystąpiły w ciągu miesiąca po szczepieniu, z czterdziestoma pięcioma osobami z grupy kontrolnej, które nie zgłosiły takich objawów.
Wyniki sugerują związek pomiędzy utrzymującą się obecnością białka S1 w komórkach odpornościowych a rozwojem objawów podobnych do PASC u zaszczepionych osób. To podobieństwo między objawami wywołanymi szczepionką a PASC wskazuje na długoterminowy wpływ utrzymywania się białka i jego potencjalnej roli w powikłaniach po zastrzyku.